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Abstract

In the present contribution, a transition from the dynamics of single particles to a Cosserat continuum is discussed.

Based on the definition of volume averages, expressions for the macroscopic stress tensors and for the couple stress

tensors are derived. It is found that an ensemble of particles allows for a non-symmetric macroscopic stress tensor and,

thus, for the existence of couple stresses, even if the single particles are considered as standard continua. Discrete ele-

ment method simulations of a biaxial box are used for the validation of the proposed homogenization technique.
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1. Introduction

The theoretical description of granular media is a challenging task and is required in several branches of

engineering such as geotechnics and soil mechanics but also in various technological applications such as

powder technologies or sintering processes. Basically, granular media can be treated by two different ap-
proaches proceeding either from microscopic or from macroscopic considerations. While the microscopic

approach is based on the description of the single grain behaviour of the granular medium by use of rigid

body dynamics, the macroscopic approach depends on continuum mechanical methods. The advantage

of the microscopic approach lies, on the one hand, in the simplicity of formulating constitutive equations

for the particle contacts and, on the other hand, in the detection of any kind of oncoming localization

during the deformation process. However, treating realistic boundary-value problems stemming from

engineering requirements implies the necessity of solving a huge amount of coupled equations, where the

motion of billions of particles has to be described, e.g., on the basis of the discrete element method (DEM),
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cf., e.g., the work by Cundall and Strack (1979). If one proceeds from continuum mechanics, where the

granular medium can be described as a porous solid material rather than an ensemble of particles, the

number of equations that has to be solved is generally much smaller. As a consequence, one obtains a more

convenient solution procedure for the treatment of realistic boundary-value problems, e.g., on the basis of
the finite element method (FEM), cf., e.g., the work by Ehlers and Volk (1998), Ehlers et al. (2001b) and

Ehlers (2002). On the other hand, the macroscopic constitutive description of granular materials is highly

complex combining elastic, plastic and viscous material properties. Furthermore, it is well known that, if

localization phenomena occur, the mathematical problem becomes ill-posed and has to be regularized.

Following this, the continuum mechanical solution of boundary-value problems, where localization phe-

nomena are expected, has to include a regularization mechanism, which, in the frame of granular media, is

naturally given by taking into account a micropolar or a Cosserat continuum (Ehlers and Volk, 1998),

respectively. Note in passing that a link between the Cosserat continuum and localization phenomena
has firstly been made by M€uuhlhaus and Vardoulakis (1987). Concerning a general view on a contin-
uum bifurcation analysis of geomaterials, the reader is referred to the work by Brinkgreve (1994) or by

Vardoulakis and Sulem (1995).

Apart from considering either the microscopic or the macroscopic approach to granular media, there is a

convenient possibility to combine the advantages of both strategies. In particular, this method is given by

a continuum mechanical treatment of granular materials on the macroscale, where the constitutive

description, e.g., the relation between stresses and strains, is substituted by the solution of a microscopic

problem based on particle mechanics. The result obtained by solving the underlying problem on the
microscale can then be homogenized by volume averages, thus relating, e.g., particle contact forces to

macroscopic stresses. Following this, it is one of the key points of the present contribution to deliver a

homogenization strategy, where macroscopic quantities are obtained as volume averages taken over the

microstructure. In contrast to the standard literature, where the homogenized stresses are usually assumed

to be symmetric, cf., e.g., the work by Drescher and de Josselin de Jong (1972) and follow-up papers, the

present findings also reveal stress asymmetries accompanied by couple stresses. These findings are due to

the fact that three different scales are considered, namely, the microscale on the grain level, the mesoscale

understood as the scale of the representative elementary volume (REV) and the macroscale of the total
granular ensemble under study. It is furthermore considered that the systems to be investigated on the

different scales are of completely different size, thus allowing for the application of Hashin�s MMM
principle of scale separation (Hashin, 1983). However, the question of how large the REVs under con-

sideration must be has been extensively discussed in the literature, cf., e.g., the work by Bear and Bachmat

(1991) or by Nemat-Nasser and Hori (1999). This question is of considerable importance, since a homo-

genization procedure always filters the information obtained on the underlying scale. Thus, the size of the

REVs must be chosen in such a way that, on the one hand, the homogenized quantities represent conve-

nient substitutes of their counterparts on the microscale and that, on the other hand, the homogenization
process does not smear out local effects like stress and strain localizations within shear bands.

Following the above remarks, it is the goal of the present contribution to answer the question of how

large must a typical REV be chosen to meet the above requirements. This question will be treated on the

basis of the DEM in combination with homogenization strategies, where the forces of the particle network

are related to macroscopic stresses and couple stresses. In particular, the paper starts with a brief recon-

sideration of the basic axioms of rigid body dynamics and of continuum mechanics, where both non-polar

and micropolar media are taken into account. In a second step, single particles are considered which are

embedded in the granular medium. In full agreement with the literature (Drescher and de Josselin de Jong,
1972; Cundall et al., 1982), the particle stresses computed from contact forces are found symmetric.

However, taking into account an ensemble of particles considered as the REV and embedded in a granular

medium reveals that the ensemble is governed by non-symmetric stresses in addition to couple stresses.

These findings are due to the fact that the particle contact forces are reduced to the particle mass centers,
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thus yielding both a particle force resultant and a particle moment resultant, where the latter turns out to

govern the existence of couple stresses. The following homogenization procedure relates the force and

moment resultants of the particles included in the REV to average stresses and couple stresses representing

the macroscopic counterparts of the local REV behaviour, cf. Diebels and Ehlers (2001), Diebels et al.
(2001) and Ehlers et al. (2001a).

In order to verify the proposed averaging strategy, a DEM simulation (Tillemans and Herrmann, 1995;

Kun and Herrmann, 1996; D�Addetta et al., 2002) of the well-known biaxial test is carried out, where the
homogenization procedure is numerically applied to the contact force network. As is well-known from both

experiments (Viggiani et al., 2001) and FEM computations of the biaxial test based on continuum me-

chanical considerations in the frame of granular media (Ehlers and Volk, 1998), it is expected that, at the

beginning of the deformation process, a fully homogeneous situation occurs which is followed by a strain

localization procedure, where narrow shear bands can be found. Furthermore, the numerical computations
by Ehlers and Volk (1998) revealed that the evolving shear bands are strongly affected by micropolar grain

rotations and couple stresses. In the present contribution, it is shown by use of different REV sizes that

sufficiently small REVs can resolve the oncoming localizations by representing the couple stresses and stress

asymmetries, whereas increasing the size of the REVs or increasing the ratio between the REV volumes and

the REV surfaces, respectively, eliminates these effects. This result is not surprising, since it is known from

experiments that the shear band width covers only a very few grain diameters (Viggiani et al., 2001).

Consequently, if the REV is large compared to the shear band thickness, the local inhomogeneities are

fully smeared out. Similar results have recently been found by Bardet and Vardoulakis (2001), where it
has been shown on the basis of a homogenization strategy proceeding from the virtual work principle that

stress asymmetries and couple stresses can basically arise. It has furthermore been shown that these

asymmetries decrease with an increasing ratio between the volume and the surface of the particle ensemble

under study.
2. Momentum and angular momentum of single particles

This section briefly recalls the basic results of rigid body dynamics as well as of mechanics of deformable

continua. These results are the onset of the homogenization process applied to single particles and to

ensembles of particles in order to compute macroscopic stresses and couple stresses from a given distri-

bution of contact forces.

The mass of a single particle P, rigid or deformable, is given by
m ¼
Z
P

dm ¼
Z
P

qdv; ð1Þ
where dm is the mass element, q the mass density and dv the volume element of P.
If P is considered as a rigid particle of arbitrary shape, the motion of P is described by the translation of

its center of mass and by the rotation around it. The position xM of the center of mass M of the particle is

defined by
xM ¼ 1

m

Z
P

xdm; ð2Þ
cf. Fig. 1, where xM is equivalent to the volume center xV of P in case of homogeneous density distribu-

tions. Furthermore, the introduction of a local position vector
�xx ¼ x� xM ð3Þ



Fig. 1. Forces acting on a single particle P with boundary oP.
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relative to M includes the identity
Z
P

�xxdm ¼ 0: ð4Þ
Applying the axioms of mechanics to an arbitrary particle P, rigid or deformable, the balance of mo-
mentum (linear momentum) yields
_pp :¼ d

dt
p ¼ k; ð5Þ
where the momentum p and the external forces k are given by
p ¼
Z
P

_xxdm; k ¼
Z
oP

tdaþ
Z
P

bdm: ð6Þ
Therein, t represents the external stress vector (contact forces per surface element da), whereas b indicates
the body forces (gravitation) per mass element dm. In case of particle mechanics, where P is assumed to be
a rigid body rather than a deformable continuum, one is generally not interested in a local but only in a

global statement. Following this, one obtains the global momentum balance with respect to M with the aid

of (3), (5) and (6) via
m€xxM ¼ k: ð7Þ

In continuum mechanics, where P is usually assumed to be a deformable body, the combination of (5) and
(6) yields
Z

P

q€xxdv ¼
Z
P

ðdivTþ qbÞdv; ð8Þ
where T is the Cauchy stress tensor related to the surface tractions by t ¼ Tn (n is the outward oriented unit

surface normal), and divð�Þ is the divergence operator corresponding to the gradient operator gradð�Þ taken
with respect to the spatial position x. Furthermore, if the fields incorporated in (8) are steady and suffi-

ciently often steadily differentiable, the local form of the momentum balance reads
q€xx ¼ divTþ qb: ð9Þ

No matter if P is rigid or deformable, the balance of angular momentum (moment of momentum) is

defined with respect to an arbitrary but fixed point in space which, in the present study, is chosen without

loss of generality as the spatial origin O. Thus,
_hh0 :¼
d

dt
h ¼ m0; ð10Þ
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where the angular momentum vector h0 and the moments m0 of the external forces are given by
h0 ¼
Z
P

x� _xxdm; m0 ¼
Z
oP

x� tdaþ
Z
P

x� bdm: ð11Þ
In case of rigid body dynamics, a substitution of x by xM þ �xx yields the angular momentum and the

moment of the external forces via
h0 ¼ xM � m _xxM þ hM ; m0 ¼ xM � kþmM ; ð12Þ

where
hM ¼
Z
P

�xx� _�xx�xxdm; mM ¼
Z
oP

�xx� tdaþ
Z
P

�xx� bdm ð13Þ
define the angular momentum and the moments of P with respect to M . Note in passing that the second
term of (13)2 generally vanishes, since the center of gravitation and the center of mass coincide, if b is

constant and is, thus, independent of x. Taking into account that P is assumed as a rigid body, where the
norm j�xxj of the position vectors �xx relative to M is constant, the corresponding velocities _�xx�xx are obtained via
_�xx�xx ¼ x � �xx ¼: X�xx: ð14Þ

Therein, x is the angular velocity of the rigid body motion and X the corresponding skew-symmetric

gyration tensor:
X ¼ �E
3

x $ x ¼ � 1
2
E
3

X ¼ 1
2
E
3

XT: ð15Þ
Note in passing that E
3

defines the fundamental tensor of third order (Ricci permutation tensor) and that x
is the axial vector of X. By combination of (13)1 and (14), hM is obtained as
hM ¼: HMx; ð16Þ

where
HM ¼
Z
P

½ð�xx � �xxÞI� ð�xx� �xxÞ�dm ð17Þ
defines the positive definite, symmetric mass tensor of inertia, where I is the fundamental tensor of second

order (identity tensor). Consideration of (7) and (13) together with the above results yields the angular

momentum balance with respect to M via
_hhM ¼ mM or ðHMxÞ� ¼ mM ; ð18Þ

respectively, where
ðHMxÞ� ¼ _HHMx þ HM _xx: ð19Þ

Therein, the time derivative of HM can be given by
_HHM ¼ H
}

M þ XHM þ HMXT; ð20Þ
where H
}

M is the Green–Naghdi rate of HM taken with respect to a co-rotational frame fixed to the mass

center M of P. Since P was assumed as a rigid body with constant values of j�xxj, the Green–Naghdi rate
vanishes and (20) reduces to
_HHM ¼ 2symðXHMÞ: ð21Þ

Given the above results together with (7)–(13), the angular momentum balance of a rigid particle P can be
split into the terms:
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xM � m€xxM ¼ xM � k;

HM _xx þ 2symðXHMÞx ¼ mM :
ð22Þ
From the above set of equations, it is seen that only the second relation, which is generally known as Euler�s
gyration equation, has the property of an axiom, while the first one is a result of the momentum balance. It

is furthermore concluded that, in the limit of a particle P reducing to a material point with vanishing values
of j�xxj, both mM and the tensor of inertia HM vanish and only (22)1 remains as an identity.

If the particle P has to be considered as a deformable rather than a rigid body, the result (22) has to be
replaced by a more general approach. Given the axiomatic angular momentum balance (10) together with

the information included in (11), the balance equation reads
Z
P

x� €xxdm ¼
Z
oP

x� tdaþ
Z
P

x� bdm: ð23Þ
Application of Cauchy�s theorem together with the Gaussian integral theorem to the first term of the right
hand side of (23) yields
Z

oP

x� tda ¼
Z
oP

ðx� TÞnda ¼
Z
P

divMdv; ð24Þ
where
M :¼ x� T ¼ ½E
3

ðx� TÞ�2 ð25Þ
is defined as the stress moment corresponding to the Cauchy stress T. Note in passing that ½��2 defines a
contraction of the arguments in brackets toward a tensor of second order. Insertion of (24) in (23) yields
Z

P

x� q€xxdv ¼
Z
P

ðdivMþ x� qbÞdv: ð26Þ
From (26), the local angular momentum statement reads
x� q€xx ¼ divMþ x� qb; ð27Þ
where divM can be split into
divM ¼ I� Tþ x� divT: ð28Þ
Following this and considering the local momentum balance (9) again leads to two different statements of

the local form of the balance of angular momentum, namely
x� q€xx ¼ x� ðdivTþ qbÞ;
I� T ¼ 0;

ð29Þ
where only the second relation includes the axiom of the angular momentum balance, while the first one is

an identity resulting from the momentum balance. Finally, it is well known that (29)2 yields
0 ¼ I� T ¼ E
3

TT ¼ 2t
A

! T ¼ TT; ð30Þ
where t
A

is the axial vector associated with the skew-symmetric part of T. Obviously, the Cauchy stress is

symmetric.
However, if a continuous body is considered, by definition, as a Cosserat continuum, the angular

momentum h0 and the external moment m0 of (11) have to be extended by



W. Ehlers et al. / International Journal of Solids and Structures 40 (2003) 6681–6702 6687
h0 ¼
Z
P

ðx� _xxþ H�xxÞdm;

m0 ¼
Z
oP

ðx� tþ �mmÞdaþ
Z
P

ðx� bþ cÞdm:
ð31Þ
Therein, H is defined as the symmetric tensor of microinertia and �xx is understood as the total local

rotational velocity given as the result of both the continuum rotation and the independent Cosserat ro-

tation (Ehlers and Volk, 1998). Furthermore, �mm is the contact moment acting on the boundary of the

body under consideration, whereas c is known as the body couple. Concerning further details on the

discussion of Cosserat continua and the application of micropolar media to a variety of boundary-value

problems, the interested reader is referred to Ehlers (2002) and Ehlers and Volk (1998) and the quotations
therein. Substituting (11) by (31), a combination of (10) and (31) yields the axiom of angular momentum to

read
 Z
P

½x� q€xxþ qðH�xxÞ��dv ¼
Z
P

½divðMþMÞ þ x� qbþ qc�dv; ð32Þ
thus substituting (26). Note in passing that the couple stress tensorM is related to the contact moments �mm
through the Cauchy theorem via
�mm ¼ Mn: ð33Þ

Given (32), the corresponding local statement reads
x� q€xxþ qðH�xxÞ� ¼ divðMþMÞ þ x� qbþ qc: ð34Þ

Proceeding from (28) together with the local momentum balance (9) again yields two different statements,

namely
x� q€xx ¼ x� ðdivTþ qbÞ;
qðH�xxÞ� ¼ I� Tþ divMþ qc;

ð35Þ
where the second relation includes the axiom of the angular momentum balance in the frame of micropolar

continua, thus substituting (29)2. In contrast to (29)2 leading to a symmetric stress T, it is seen from (35)2
that T is non-symmetric, whenever the continuum is micropolar. It is furthermore concluded that (35)2
compares to (22)2, if the right-hand side of (35)2 is identified with the total local moment by contact and

volume terms.

Having recalled these well-known results of rigid body dynamics and mechanics of deformable continua,

the same procedure can be applied to particles and ensembles of particles embedded in a surrounding

continuum.
3. Balance equations for embedded particles

The results derived above have been given for both rigid and deformable single particles independent of

their shape and size. However, in several engineering applications, large ensembles of particles have to be

considered, cf. Fig. 2. For example, if a sand heap consisting of millions of sand grains is taken into account

in the frame of soil mechanics, one is generally interested in the description of the macroscopic behaviour of

the body B (the granular medium) rather than in the behaviour of the individual grains PðiÞ. Obviously, the

macroscopic scale D of B is much larger than the characteristic dimension d of the particles PðiÞ. Fur-
thermore, since the motion of the particles takes place on a scale e ¼ d=D � 1, the balance equations of

momentum and of angular momentum of the single particles can be simplified by use of the arguments of



Fig. 2. Continuous body B consisting of a manifold of individual particles PðiÞ.
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scale separation. Taking into account that the volume of the particles decreases with order Oðe3Þ, while
their surfaces only decrease with order Oðe2Þ, it is easily concluded that, in the limiting case of small
particles embedded in a large ensemble B, where the scale e tends to zero ðe ! 0Þ, the volume terms in the
momentum balance (8) or in the angular momentum balance (26) vanish and the general balance relations

of the individual particles reduce to the equilibrium conditions of forces
0 ¼ k ¼
Z
oPðiÞ

tda ¼
Z
PðiÞ
divTdv ð36Þ
and of moments
0 ¼ m0 ¼
Z
oPðiÞ

x� tda ¼
Z
PðiÞ
divMdv: ð37Þ
Following the arguments given in (27)–(30) again yields a symmetric stress
T ¼ TT ð38Þ

on the particle level d.
If the discussion concerns rigid particles, where the contact zones between the individual grains PðiÞ are

small in comparison to the whole particle surfaces oPðiÞ, one is allowed to assume point contacts rather than

area contacts. Thus, the contact forces can be given as single forces fðiÞc acting at the contact points c, cf.
Fig. 3, which are connected with the mass centers MðiÞ of PðiÞ by the branch vectors lðiÞc.

Following this, the equilibrium conditions (36) and (37) can be given both in their continuous and in

their discrete forms via
0 ¼
Z
oPðiÞ

tda ¼
XN
c¼1

fðiÞc ð39Þ
and
0 ¼
Z
oPðiÞ

�xx� tda ¼
XN
c¼1

lðiÞc � fðiÞc; ð40Þ



Fig. 3. Idealization of contact stresses to single contact forces.
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where, to obtain (40) from (37), x ¼ xM þ �xx together with (39) has been used. Furthermore, it has been
assumed that PðiÞ is affected by N discrete contacts.
4. Embedded ensembles of particles

If the scale difference between the grains (microscale) on the one hand and the whole body (macroscale)

on the other hand is sufficiently large, a mesoscale consisting of an ensemble of particles can be introduced

in the sense of a REV. Following this, a standard continuum, which is generally understood to consist of a

manifold of abstract material points, is now understood to consist of a manifold of REVs. Thus, the ar-

guments of scale separation can be twicely applied, namely, when the REV is constructed as a manifold of

grains by linking the micro- to the mesoscale and, furthermore, when the body is constructed as a manifold

of REVs, i.e., when the mesoscale is linked to the macroscale, cf. Fig. 4. This situation, where three scales
are touched, is well known as Hashin�s MMM (micro–meso–macro) principle of homogenization (Hashin,

1983), which is intensively discussed with respect to the definition of the REV, e.g., by Bear and Bachmat

(1991) or by Nemat-Nasser and Hori (1999). In particular, while the macroscopic scale is still of order OðDÞ
and the microscopic scale is still of order OðdÞ, the intermediate mesoscale of the REV is of order OðdÞ.
Fig. 4. Continuous body B consisting of particle ensembles (REVs).



Fig. 5. Boundary of the REV, boundary particles with contact forces, force resultants and moment resultants.
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Following the scale separation arguments, it is one of the key points of this article to assume that the

position vectors x
ðiÞ
M of the mass centers M ðiÞ of the individual particles PðiÞ with boundary oPðiÞ can be

understood as field quantities xM in the REV with boundary oR. Thus, the boundary of the REV is rep-
resented by the mass centers of the bounding particles, cf. Figs. 4 and 5. Furthermore, the scale separation
arguments imply that the motion of the particles in the REV takes place on the scale ed ¼ d=d, while the
REV deforms in B on the scale ed ¼ d=D. Assuming ed and ed to be sufficiently small, i.e., ed � 1 and

ed � 1, the simplified balance equations (36) and (37) of the grains hold in the REV and, furthermore,

equivalent relations of the REV hold in B. Thus, on the grain level, one has
Z
oPðiÞ

tda ¼ 0 and xM �
Z
oPðiÞ

tdaþ
Z
oPðiÞ

�xx� tda ¼ 0; ð41Þ
while, on the REV level, it follows that
Z
oR

tda ¼ 0 and

Z
oR

ðxM � tþ �xx� tÞda ¼ 0: ð42Þ
Given (42), it is evident from the character of the REV that the magnitude of the norms of xM and of �xx are
of different size. Following this basically interprets �xx� t as the fluctuations of xM � t, comparable to the

turbulence contributions to the fluid stresses. Furthermore, note in passing that, in addition to Hashin�s
MMM principle, where D � d � d leads to e � 1, ed � 1 and ed � 1, the existence of non-vanishing

fluctuations also implies that ed � ed.

Furthermore, substituting the moment �xx� t by the notion �mm and following the arguments of (24)–(26) or
of (31)–(33), respectively, the REV balance relations (42) yield
Z

oR

tda ¼
Z
R

divMTdv ¼ 0;Z
oR

ðxM � tþ �mmÞda ¼
Z
R

divMðMþMÞdv ¼ 0;

ð43Þ
where divMð�Þ is the divergence operator with respect to the field xM and, in extension of (33), �mm is related to
the couple stress M using Cauchy�s theorem via
M ¼ �xx� T ! �mm ¼ Mn ¼ ð�xx� TÞn ¼ �xx� t: ð44Þ
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Given (43), the corresponding local statements read
divMT ¼ 0; divMðMþMÞ ¼ 0: ð45Þ

If one furthermore splits the divergence of the stress moment M via (28) into
divMM ¼ I� Tþ xM � divMT; ð46Þ

(45) and (46) combine to
I� Tþ divMM ¼ 0: ð47Þ

In contrast to (38) implying symmetric Cauchy stresses T on the particle level, it is found that T is non-

symmetric on the level of the REV, whenever couple stresses M occur. Furthermore, it is easily concluded

from the definition ofM given by (44) thatM vanishes with vanishing fluctuations �xx� t, i.e., in the limit of
vanishing �xx with j�xxj ! 0. These arguments clearly show that the REV represents a micropolar Cosserat

continuum, wheneverM exists, and that it has the character of a standard non-polar continuum in the limit

of vanishing �xx. Furthermore, if the REV is considered as a continuum in the sense that it consists, theo-
retically, of a manifold of material points or particles, respectively, no matter whether or not j�xxj tends to
zero, the number of boundary particles is independent of the size of j�xxj and the continuum can be con-
sidered, depending on the necessities of the model under consideration, either as a micropolar material or as

a non-polar one.

On the other hand, realistic REVs consist of a certain number of grains instead of a theoretical manifold
of material points. Thus, considering constant values of j�xxj, a transition from a Cosserat to a standard
continuum can also be guaranteed. In this case, the REV volume has to be increased such that the ratio

between the REV radius and the particle radius increases with an increasing ratio between the REV volume

and the REV surface. Otherwise, the character of a Cosserat continuum is maintained.

If one is interested in the description of rigid particles embedded in the REV, the continuous formulation

of the statements given above can be substituted by discrete statements, cf. (39) and (40). In this case, where

the boundary of the REV is assumed to consist of B rigid particles PðiÞ, where each PðiÞ has N� outward
oriented discrete contacts, cf. Fig. 5, the force equilibrium statement (43)1 on the REV level reads
Z

oR

tda ¼
Z
R

divMTdv ¼
XB
i¼1

XN�

c¼1
fðiÞc ¼

XB
i¼1

fðiÞ ¼ 0; ð48Þ
where the force resultants of the outward oriented contact forces acting on the boundary of the bounding

particles PðiÞ are given by
fðiÞ ¼
XN�

c¼1
fðiÞc: ð49Þ
Note in passing that the force resultants fðiÞ represent the contact forces acting on the boundary oP of the
REV. In addition to the force equilibrium statement, the equilibrium equation of moments on the REV

level represented by (43)2 turns out to yield
Z
oR

ðxM � tþ �mmÞda ¼
Z
R

divMðMþMÞdv ¼
XB
i¼1

x
ðiÞ
M

 
� fðiÞ þ

XN�

c¼1
lðiÞc � fðiÞc

!

¼
XB
i¼1

ðxðiÞ
M � fðiÞ þ �mmðiÞÞ ¼ 0; ð50Þ
where the resultants �mmðiÞ of the moments of the outward oriented contact forces acting on the bounding

particles PðiÞ and taken with respect to particle centers M ðiÞ are given by
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�mmðiÞ ¼
XN�

c¼1
lðiÞc � fðiÞc: ð51Þ
Again, note in passing that the resulting moments �mmðiÞ represent the contact (Cosserat) moments acting on

the boundary oR of the REV. Furthermore, it should be noticed that these moments are independent of the
resulting forces fðiÞ. In contrast to the image of a continuous body, where the abstract assumption j�xxj ! 0

led from a micropolar to a non-polar continuum, a limit analysis in the frame of particle ensembles con-

stituting the REVs generally exhibits non-vanishing moments �mmðiÞ. Given realistic REVs with constant

reference volume, this result is due to the fact that, even if the particle size jlðiÞcj on the microscale with order
d is extremely small such that jlðiÞcj=d ! 0 on the mesoscale of the REV with order d, the number B of the
particles bounding the REV tends to infinity, whenever the REV size does not shrink with the particle size.
Thus, one generally obtains
lim
B!1

jlðiÞc j=d!0

XB
i¼1

XN�

c¼1
lðiÞc � fðiÞc 6¼ 0: ð52Þ
As a consequence, the information of the discrete microstructure of the REV is embedded into a resulting

continuum theory, where the material points are identified with the REVs. This continuum obviously turns

out to be a micropolar Cosserat continuum (Diebels and Ehlers, 2001; Diebels et al., 2001; Ehlers et al.,

2001a,b).
5. Homogenization strategy

Proceeding from the scale separation arguments by use of the MMM principle given in the previous

section, the distribution of contact forces on the particle level can be replaced by stresses and couple stresses

on the mesoscale of the REV. Similar arguments can be found in the literature, when the particle scale is

related to the macroscale by homogenization, cf., e.g., the work by Drescher and de Josselin de Jong (1972),

Cundall et al. (1982), Chang and Liao (1990), Bagi (1996) and Kruyt and Rothenburg (1998). Furthermore,

embedding the REV in a body B yields the macroscopic stress and couple stress quantities at a material

point of B as the homogenized counterparts of the REV stresses and couple stresses obtained by volume

averaging procedures. Since the REVs are embedded in B, the scale separation argument led to the local
equilibrium conditions (45) on the REV level, where the stresses T and the stress momentsMþM can both

be replaced by an abstract substitute A. Thus,
divMA ¼ 0: ð53Þ

Defining the macroscopic stress and couple stress tensors as volume averages hAi taken over the REV yields
(Hill, 1963)
hAi :¼ 1

VR

Z
R

Adv; ð54Þ
where VR is the volume of the REV under consideration. In order to relate the average hAi to the resultant
forces and moments acting on the boundary of the REV, the following identities are needed:
AT ¼ IAT ¼ ðgradMxMÞAT;
divMðxM � AÞ ¼ ðgradMxMÞAT þ xM � divMA:

ð55Þ
Combination of the above identities yields
AT ¼ divMðxM � AÞ � xM � divMA: ð56Þ
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Following this, the volume average hATi ¼ hAiT reads
hAiT ¼ 1

VR

Z
R

divMðxM � AÞdv� 1

VR

Z
R

xM � divMAdv: ð57Þ
By consideration of the generalized equilibrium condition (53), the second term of (57) vanishes, and one

finally obtains the relation
hAiT ¼ 1

VR

Z
oR

ðxM � AÞnda; ð58Þ
where the volume integral has been substituted by a surface integral using an extended Gaussian theorem.

Substituting the abstract equilibrium quantity A by the stress T yields
hTiT ¼ 1

VR

Z
oR

ðxM � TÞnda ¼ 1

VR

Z
oR

xM � tda; ð59Þ
where Cauchy�s theorem has been used. Following this, one finally obtains the average stress as
hTi ¼ 1

VR

Z
oR

t� xM da: ð60Þ
Furthermore, by substituting the local stresses by the particle stress resultants of the outward oriented

contact forces given by (49) and by replacing the field quantities xM by the position vectors x
ðiÞ
M of the

particle centers, one obtains the discrete relation
hTi ¼ 1

VR

XB
i¼1

fðiÞ � x
ðiÞ
M : ð61Þ
The above equation represents the well-known result that the average REV stress is given by the product of

the contact forces (represented by the external force resultants acting on the boundary particles) and the

branch vectors (related to the position vectors x
ðiÞ
M of the mass centers of the boundary particles). However,

note in passing that hTi is generally non-symmetric with respect to the existence of couple stresses.
Substituting the abstract equilibrium quantity A by the stress moments M and the couple stresses M

yields in analogy to (59)
hMþMiT ¼ 1

VR

Z
oR

½xM � ðMþMÞ�nda ¼ 1

VR

Z
oR

xM � ðxM � tÞdaþ 1

VR

Z
oR

xM � �mmda; ð62Þ
where, (44)2 together with
Mn ¼ ðxM � TÞn ¼ xM � t ð63Þ
has been used. Separating (62) by reasons yields
hMi ¼ 1

VR

Z
oR

ðxM � tÞ � xM da;

hMi ¼ 1

VR

Z
oR

�mm� xM da:
ð64Þ
Furthermore, by substituting the local stress and couple stress moments in analogy to (50) by the outward

oriented contact forces acting on the boundary particles and substituting xM by x
ðiÞ
M and �mm by the particle

couples �mmðiÞ, one obtains
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hMi ¼ 1

VR

XB
i¼1

ðxðiÞ
M � fðiÞÞ � x

ðiÞ
M ;

hMi ¼ 1

VR

XB
i¼1

�mmðiÞ � x
ðiÞ
M :

ð65Þ
Finally, the identity
ða� bÞ � c ¼ a� ðb� cÞ ð66Þ
of tensor calculus, valid for arbitrary vectors a, b, c, together with the definition of the particle couples �mmðiÞ

from (51) yields
hMi ¼ 1

VR

XB
i¼1

x
ðiÞ
M � ðfðiÞ � x

ðiÞ
M Þ;

hMi ¼ 1

VR

XB
i¼1

XN�

c¼1
lðiÞc

 
� fðiÞc

!
� x

ðiÞ
M :

ð67Þ
From the above results, it is seen that the stress moment hMi is given as the sum of the moments of the
stress contributions included in hTi from (61), while the couple stress hMi is obtained similar to (61), when
the stress contributions fðiÞ of the bounding particles included in (61) are substituted by the sum of the

particle contact moments included in �mmðiÞ from (51). Furthermore, it is concluded that a couple stress exists,

whenever the MMM principle is applied to particle ensembles embedded in a continuous medium. The

couple stress results from the fact that a mesoscopic REV consisting of an ensemble of microscopic particles

has been embedded in a macroscopic body, which is clearly obtained as a micropolar Cosserat continuum

with considerable values of M, if ed � ed holds in addition the MMM principle. It has furthermore been
shown, on the one hand, that the character of micropolarity is maintained even in case of decreasing

particle sizes as far as the REV size does not decrease in the same manner, cf. (52). On the other hand, it is

furthermore concluded that, if the REV decreases to the particle size, e.g., if the REV can be identified by a

single particle, the stress becomes symmetric, cf. (38), and the Cosserat continuum changes towards a

standard non-polar continuum.

Applying the above results to continuum mechanical problems implies that the stresses incorporated in

(9) as well as the stresses and the couple stresses incorporated in (35)2 can be replaced by the above averages

hTi and hMi. Finally, if a standard continuum is concerned, e.g., in frame of the FEM, one has to solve
only the weak form of the momentum balance (9), while, if a micropolar continuum has to be considered,

one has to solve the weak form of (9) together with the weak form of the angular momentum balance (35)2,

cf. Ehlers (2002). On the other hand, if one is interested to fully solve the problem on the particle level, e.g.,

by use of the DEM, one has to solve the Eulerian equations (7) and (22)2 for each particle taking into

account convenient contact conditions. Based on solutions of the discrete problem, arbitrary sizes of REVs

can be investigated in order to study the homogenization process yielding the local averages hTi and hMi.
6. Numerical example and validation

In the present section, the homogenization procedure discussed above is applied to the boundary-value

problem of the biaxial test, cf. Fig. 6. In particular, a two-dimensional problem is taken into account, where

the biaxial box under consideration consists of a manifold of rigid grains. The computations are carried out
in the framework of the DEM, where the appearance of asymmetric stresses accompanied by couple

stresses is studied with respect to different REV sizes. Following this, the key focus concerns the question,



Fig. 6. Biaxial setup and deformed state of the benchmark under study.
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how large must the REV be in order to yield, on the one hand, local averages as convenient substitutes of

their microscopic counterparts and, on the other hand, a correct representation of the underlying micro-

structure. In particular, this question can be answered on the basis of how much particles have to be in-

cluded within the REV such that the a.m. requirements can be satisfied. By numerical simulations, an

‘‘ideal’’ size of the REV on the mesoscale of order d can be discussed that guarantees a reliable quantitative
comparability with the macroscale of order D without loss of locality.
6.1. Discrete element model

The following computations are carried out on the basis of a two-dimensional discrete element simu-

lation (Cundall and Strack, 1979) with convex polygonal particles, cf. Tillemans and Herrmann (1995) and

Kun and Herrmann (1996), representing, e.g., a dry granular material like sand, where each particle center

is assigned three degrees of freedom, two translations and one rotation. Furthermore, the model is based on
a particle composite, where the polygonal mesh is determined by a Voronoi tessellation considering the

generated polygons as rigid grains. Following this, these grains are assumed to be neither breakable nor

deformable, but they may overlap when they are pressed against each other. In addition, the local defor-

mation behaviour caused by the overlaps can be approximated by elastic repulsive forces fðiÞc at each

contact point c of a particle PðiÞ. In general, the repulsive forces can be related to the overlapping areas of

the particles in contact with respect to both normal and tangential stiffnesses (Tillemans and Herrmann,

1995), which can be related to each other, e.g., by Coulomb�s friction law. Furthermore, if more sophis-
ticated models are of interest, additional rotational stiffnesses can be taken into account. In the present
simulation, rotational stiffnesses as well as the tangential parts of the contact forces are neglected. However,

this has not only been done for simplicity, but also in order to show that, in the case of polygonal grains,

couple stresses simply arise from the eccentricities of the particle contacts with respect to the local mass

centers and have not to be introduced by a refined contact description, where the transfer of moments

additionally stems from tangential contact forces and rotational stiffnesses, cf., e.g. Chang and Liao (1990)

and Chang and Gao (1995). The force resultants fðiÞ and the moment resultants �mmðiÞ, which are now only

due to the eccentricities of the normal forces of each PðiÞ, are inserted into the equations of motion, which

are numerically solved for each particle with the aid of the Gear–Predictor–Corrector time integration
scheme, thus yielding the new positions, velocities and accelerations of the particles. More information on
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the applied model as well as further descriptive simulation results can be found in D�Addetta et al. (2001,
2002).

6.2. The biaxial problem

In this article, the benchmark used for the validation of the above homogenization procedure is chosen

as a strain driven biaxial simulation, where the biaxial box with rigid side walls consists of approximately

2500 polygonal particles. Loading takes place by pressing together the top and bottom platens with a

constant velocity, while the side walls are assigned a constant pressure, cf. Fig. 6. While it is well known
from experiments on granular samples that a shear localization occurs at a certain amount of vertical

displacements (Viggiani et al., 2001), it has additionally been found by numerical simulations based on a

Cosserat continuum included in the FEM (Ehlers and Volk, 1998) that the localization zone is affected by

micropolar rotations and couple stresses, while, in the remainder of the biaxial domain, no Cosserat ro-

tations or couple stresses occur. Following this, it is easily concluded that the micropolar effects occurring

in the boundary-value problem under study are of boundary layer type. These results are not only expected

to be recovered by use of the DEM, but it is also expected that the homogenization process detects the

macroscopic couple stresses M in the shear band zones by taking suitable volume averages over REVs in
the localizing domains. Finally, it should be mentioned that the following study, although it is understood

as an adequate benchmark for the validation of the proposed homogenization technique, does not allow for

a quantitative comparison with a real granular structure, since the parameters and contact laws, which are

used here, are chosen arbitrarily.

In Fig. 6(a), the initial particle structure of the biaxial problem is presented. The particles on the vertical

middle line of the sample are darkened in order to simplify a comparison with the deformed state given in

Fig. 6(b). Furthermore, two center particles, each belonging to two different REV sizes, are marked. These

REVs, which are widely used in the following homogenization procedure, are compared to each other when
they are assumed to exhibit idealized diameter of either five particles (REV_5) or of 19 particles (REV_19).

The deformed sample, cf. Fig. 6(b), shows the formation of two parallel shear zones, where the upper one

appeared firstly. Note in passing that the particles above the shear zone and below the shear zone

form wedges that undergo a rigid body translation without any visible internal deformation or rotation.

The region in between the shear zones behaves like a rectangular block sheared at the top and at the

bottom. Between the wedges and the middle block, regions of finite width with high shear rates charac-

terized by dilation and particle rotations represent the shear bands. As can be seen by a comparison of the

accentuated particles before and after the deformation of the specimen, the deformation of the sample is
highly localized in the shear band domains. The purely local deformation of the vertical line of the

darkened particles reveals a reorganization of the particle structure. In particular, this line remains vertical,

except of the ‘‘discontinuity’’ in the region of the shear zones. Although a comparison with experimental

data is not the topic of the present contribution, it should be emphasized that the simulations given here are

in good qualitative agreement with both experimental and numerical results of dry granular materials like

sand etc., cf. the biaxial experiments on Hostun sand given by Viggiani et al. (2001) or the computations

described by Ehlers and Volk (1998).

6.3. Numerical results

At each time step of the biaxial simulation, the average stress and couple stress tensors according to (61)

and (67)2 have been evaluated for approximately 1500 REVs. These REVs have been created in the fol-

lowing way, cf. D�Addetta et al. (2003): After having drawn a circle around the center particle of the REV
under consideration, all particles inside the circle and those boundary particles with mass centers inside the
circle are assumed to belong to the REV. Following this, the polygonal line following the mass centers of



Fig. 7. REV basis particles (a) and ‘‘macroscopic’’ stress–strain behaviour (b).
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the bounding particles represents the boundary oR of the REV with the volume VR. The composition of
each REV is fixed at the beginning of the simulation and is not changed in the course of it. One could think

of all particles within the REVs that they are surrounded by a flexible vessel allowing for internal defor-

mation as well as for an interchange of forces with the surrounding particles (Huet, 1997). Hence, the shape

of the REVs can only be coarsely approximated by a circle, cf. Fig. 6(a) for two arbitrarily chosen REV
positions. The basis particles (centers) of all controlled REVs are the lightened particles shown in Figs. 6

and 7(a), where, around each of those particles, a more or less circular influence region defines the REV.

Different REV sizes have been investigated in order to verify the proposed homogenization technique.

Throughout this section, the focus lies on the following two REV sizes:

• REV_5: On average, there is a REV diameter of five particles with approximately 20 particles inside the

REV,

• REV_19: On average, there is a REV diameter of 19 particles with approximately 280 particles inside the
REV.

In Fig. 7(b), the overall stress–strain response in terms of the vertical coefficient T22 of the stress tensor T
is plotted versus the strain coefficient e22. Therein, T22 refers to the externally measurable stress answer of
the sample computed by the reaction forces at the bottom or the top loading platens divided by the sample

areas. Furthermore, e22 is simply measured by the vertical displacement with respect to the specimen height.
The pointers and at the stress–strain curve denote the evolution of the shear bands emphasized in

Fig. 6(b). Due to the formation of the first shear band in the upper part of the sample, cf. , a sharp drop
by 25% of the stress is achieved. When the second shear band occurs at a short time later, a further but

smaller drop of the stress is observed. Afterwards, the deformation of the sample continues without any

notable increase of stress. Note in passing that the consideration of polygonal particles instead of circular

ones prevents from the formation of rolling modes within the particle sample, typically seen in simulations

with circles, cf. Ehlers et al. (2001a,b). Furthermore, at pointer , the typical particle interlock for poly-

gonally shaped grains ends up in an abrupt failure, when suddenly a part of the stored energy is set free.

The goal of the further computations is to show that the application of the above homogenization

technique maintains inhomogeneous effects occurring on the microscale when the microstructure is
transferred towards the mesoscopic REV. However, this statement depends on the chosen REV size. To

illustrate this statement, two particular REV positions are used for the oncoming comparison. In the first

case, the corresponding REV basis particle lies within the firstly evolving shear band, whereas, in the second



Fig. 8. Norm of the couple stress tensor hMi for different REVs inside (a) the shear band and outside (b) the evolving shear bands.
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case, the basis particle is situated outside of the influence zone of both shear bands. Both basis particles are

identified with the centers of the circles marked in Fig. 6(a). In Fig. 8, the norm jhMij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hM13i2 þ hM23i2

q
of the couple stress tensor hMi corresponding to the REV sizes REV_5 and REV_19 at the two REV
positions is plotted versus the nominal vertical strain coefficient e22 defined above. Concerning Fig. 8, two
effects are visible: Firstly, as has been expected, couple stresses are only active in the shear band zone, cf.

Fig. 8(a), while outside the shear band no couple stresses occur, cf. Fig. 8(b). Secondly, the homogenized

couple stresses become only visible if the REV size is small enough such that microscopic effects are not

smeared out on the mesoscale, cf. the different results of REV_5 and REV_19 given in Fig. 8(a). Once
again, these observations are in good agreement with both numerical simulations carried out on the basis of

the FEM by use of a micropolar Cosserat continuum (Ehlers and Volk, 1998; Ehlers, 2002) as well as

experimental results on dry granular materials. Since the width of experimentally observable shear bands,

like in sand, consists of only a few grain diameters (Viggiani et al., 2001), a REV should not be chosen too

large in order to capture the influence of the microscopic inhomogeneities on the macroscale. In Figs. 8 and

9, the pointer again indicates the onset of the first shear band.

Concerning the particle contact behaviour included in this study, recall that only normal stiffnesses have

been taken into account and that tangential forces as well as rotational stiffnesses have not been considered.
Thus, in contrast to articles, where rotational stiffnesses are used, cf., e.g., the work by Chang and Gao

(1995), the couple stresses naturally result from the eccentricities of the normal contact forces and are

neither due to tangential contact forces nor to an enhanced contact description through the introduction of

rotational stiffnesses.
Fig. 9. Difference of shear stresses included in hTi for different REVs inside (a) and outside (b) the evolving shear band.
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In addition to the couple stresses, a further indicator for the existence of localization zones is the ex-

istence of non-symmetric stress tensors, which, in the biaxial problem under study, are given by non-

vanishing differences between hT12i and hT21i. Recall that, if a couple stress exists, the stress tensor is not
symmetric and, hence, hT12i 6¼ hT21i is expected to hold in the localization zone. In Fig. 9, the value
jhT12i � hT21ij of the difference between the shear stresses is plotted with respect to the size and the position
of the REVs. From this figure, it is clearly seen when hTi becomes unsymmetric. In analogy to the detection
of couple stresses, it is evident that stress asymmetries are only obtained in the case of a sufficiently small

REV lying within the localization region. Concerning the present example, there is only a clear difference

between hT12i and hT21i, cf. Fig. 9(a), for the REV with size REV_5 located inside the shear band. Fur-
thermore, it is seen that the REV with size REV_19 is unable to detect a shear zone by use of the proposed

homogenization technique. In addition, it is obvious that the REVs outside of the developing shear bands

exhibit symmetric stresses like they exhibit vanishing couple stresses, cf. Figs. 8(b) and 9(b).
Concerning the above results, it should be mentioned that a hT22i versus e22 diagram of the corre-

sponding REVs would principally follow the graph of the macroscopic stress–strain curve given in Fig.

7(b). Therein, the locality of the variables is included expressed by fluctuations in the hT22i values with
respect to the position of the REVs. Furthermore, it is observed that the amplitude of stress asymmetries

decreases with increasing volumes of the REVs. These findings do not only correspond to the remarks given

above in Section 4, but they are also related to the observations made by Bardet and Vardoulakis (2001). In

addition to the findings by Bardet and Vardoulakis, the present article also provides a backbone for a

sound numerical treatment of the proposed homogenization process. It has furthermore been found that
the position as well as the size of the REVs play an important role, as stress asymmetries and, thus, couple

stresses are only active in the shear band zones. Following this, the result of an averaging procedure

strongly depends on the selection and on the geometry of the particular REV.

Finally, the temporal progress of the couple stresses as is shown in Figs. 10 and 11 gives additional

insight into the activation of couple stresses in shear zones. The norm of the couple stress tensor is plotted

for both REV sizes with respect to the time steps , , and indicated in Fig. 7(b). This sequence

covers the time interval between the development of the first shear band and the onset of the second one.

Note in passing that the deformation of the sample at time step has already been presented in Fig. 6(b).
Furthermore, the homogenized quantities computed for the particular REVs are projected onto the
Fig. 10. Temporal progress of the norms of the couple stresses for REVs of size REV_5.



Fig. 11. Temporal progress of the norms of the couple stresses for REVs of size REV_19.
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corresponding basis particle in the deformed state, where the increasing darkness of each basis particle

represents the increasing average couple stress value in a circular neighbourhood of this particle. In ad-

dition, it should be mentioned that only those basis particles indicated by a light colour in Fig. 7(a) are used

for the graphical representation of Figs. 10 and 11. Hence, no REVs have been placed in the boundary

regions of the sample. A clear localization of the couple stresses becomes evident within the region of the

firstly evolving shear band for the REVs of size REV_5. Moreover, different points of activity within the

shear zone can be recognized during the course of the controlled time interval. This shows that the for-
mation of the localization zone is not as abrupt as one could think when the overall stress–strain response

in Fig. 7(b) is observed. In contrast, the temporal progress for REVs of size REV_19 does not reveal any

activity within the first shear zone. This fact would become even more evident, if the scale in Fig. 11 would

be adapted to the maximum values of REV_19. As a consequence of the relative large size of REV_19, the

norm of the couple stresses tends to zero and a smearing-out effect is obtained. Nevertheless, small local

fluctuations are still present, however, in a statistically distributed manner instead of a strict localization as

was found for the REVs of size REV_5. A more detailed analysis of the boundary-value problem under

study with emphasis on the numerical application of the presented homogenization strategy will be given in
a follow-up paper (D�Addetta et al., 2003).
However, there exists the following general dilemma: On the one hand, a discrete model has been applied

in contrast to a continuum model in order to precisely describe the locality of certain mechanical variables.

On the other hand, macroscopic stresses and couple stresses are required and should be obtained by

averaging or homogenization methods without yielding a loss of the detected locality. But, since each

homogenization technique based on averaging includes a filter with respect to the computation of the

relevant mechanical quantities, there is always the risk of losing the information to be investigated. Con-

cerning this remark, it has been found within the present study that an ‘‘ideal’’ REV size was obtained by
the size REV_5 containing around 20 particles. This REV, however far away from the theoretical re-

quirement of a manifold of particles, was found to be large enough to correctly represent averages relating

microscopic to macroscopic quantities and small enough to catch localization effects like couple stresses

and stress asymmetries. Further on, the REV_5 size guarantees values of the average stress hTi to be
comparable to the results of a fully macroscopic analysis in the framework of a continuum model. Of

course, considering the REV_5 size as ‘‘ideal’’ only holds for the problem under study, when the compu-
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tation of stresses and couple stresses is concerned. This statement has been checked by additional com-

putations, where the volume terms (body forces and accelerations) that are skipped by the homogenization

procedure are included in the computations leading to nearly the same numerical values for

jhMij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hM13i2 þ hM23i2

q
and for jhT12i � hT21ij. An extension of the ideas presented in this study to ki-

nematic and energetic values, as well as the application to further boundary-value problems will show the

generality of the presented results (D�Addetta et al., 2003).
7. Conclusions

The present contribution recalls the basic axioms of rigid body dynamics and of continuum mechanics as

the basis for a homogenization procedure relating the contact forces between the grains of a particle en-

semble to macroscopic stresses and couple stresses. Following the arguments of scale separation, the be-

haviour of embedded particles is governed by equilibrium conditions which are expressed in terms of force
and moment resultants in the mass centers of the individual grains. Finally, volumetric averages yield

expressions for the stresses and for the couple stresses. While the stresses are related to the forces acting on

the particles, the couple stresses are related to the moments resulting from the reduction of the contact

forces towards the particle mass centers.

The proposed homogenization strategy has been applied to a biaxial test simulated by the DEM. It has

been found that the diameter of the REVs should be of the order of around 5 times the typical particle

diameter in order to reproduce the macroscopic stress response together with localization effects occurring

when strong inhomogeneities dominate the local behaviour. Increasing the diameter of the REVs leads to
smearing out the results in the sense that localizations become invisible. In particular, it was found that

micropolar effects occurring in the shear band zones are governed by the existence of couple stresses and

non-symmetric stress tensors. These effects are of boundary layer type and are, therefore, only detected by

sufficiently small REVs, while they are shrinking with increasing REV sizes. From the biaxial example

under study, the thickness of the shear band was found to be of the order of only several grain diameters,

thus limiting the REV size to about 5 particle diameters. Following this, the size of the REV is obviously

limited by the size of the effects to be described rather than by the theoretical requirement of containing a

‘‘manifold’’ of particles. Finally, the presented results clearly show that a particle ensemble has the char-
acter of a micropolar Cosserat continuum rather than it represents a non-polar standard continuum.
Acknowledgement

The authors wish to thank the ‘‘Deutsche Forschungsgemeinschaft’’ (DFG) for the financial support

given to the Research Group FOR 326 ‘‘Modellierung koh€aasiver Reibungsmaterialien’’.
References

Bagi, K., 1996. Stress and strain in granular assemblies. Mechanics of Materials 22, 165–177.

Bardet, J.P., Vardoulakis, I., 2001. The asymmetry of stress in granular media. International Journal of Solids and Structures 38, 353–

367.

Bear, J., Bachmat, Y., 1991. Introduction to Modeling of Transport Phenomena in Porous Media. Kluwer Academic Publishers,

Dordrecht.

Brinkgreve, R.B.J., 1994. Geomaterial models and numerical analysis of softening. Ph.D. Thesis. CIP-Gegevens Koniglijke

Bibliotheek, Den Haag.



6702 W. Ehlers et al. / International Journal of Solids and Structures 40 (2003) 6681–6702
Chang, C.S., Liao, C.L., 1990. Constitutive relation for a particulate medium with the effect of particle rotation. International Journal

of Solids and Structures 26, 437–453.

Chang, C.S., Gao, J., 1995. Second-gradient constitutive theory for granular material with random packing structure. International

Journal of Solids and Structures 32, 2279–2293.

Cundall, P.A., Strack, O.D.L., 1979. A discrete numerical model for granular assemblies. G�eeotechnique 29, 47–65.

Cundall, P.A., Drescher, A., Strack, O.D.L., 1982. Numerical experiments in granular assemblies; measurements and observations. In:

Vermeer, P.A., Luger, H.J. (Eds.), IUTAM Conference on Deformation and Failure of Granular Materials, A.A. Balkema,

Rotterdam, pp. 355–370.

D�Addetta, G.A., Kun, F., Herrmann, H.J., Ramm, E., 2001. From solids to granulates––Discrete element simulations of fracture and
fragmentation processes in geomaterials. In: Vermeer, P.A., Diebels, S., Ehlers, W., Herrmann, H.J., Ramm, E. (Eds.), Continuous

and Discontinuous Modelling of Cohesive-Frictional Materials. Springer-Verlag, Berlin, pp. 231–258.

D�Addetta, G.A., Kun, F., Herrmann, H.J., Ramm, E., 2002. On the application of a discrete model to the fracture process of cohesive
granular materials. Granular Matter 4, 77–90.

D�Addetta, G.A., Ramm, E., Diebels, S., Ehlers, W., 2003. A particle center based homogenization strategy for granular assemblies.
Engineering Computations, in press.

Diebels, S., Ehlers, W., 2001. Homogenization method for granular assemblies. In: Wall, W.A., Bletzinger, K.-U., Schweizerhof, K.

(Eds.), Trends in Computational Mechanics. CIMNE, Barcelona, pp. 79–88.

Diebels, S., Ehlers, W., Michelitsch, T., 2001. Particle simulations as a microscopic approach to a Cosserat continuum. Journal de

Physique IV France 11, 203–210.

Drescher, A., de Josselin de Jong, G., 1972. Photoelastic verification of a mechanical model for the flow of granular material. Journal

of the Mechanics and Physics of Solids 20, 337–351.

Ehlers, W., 2002. Foundations of multiphasic and porous materials. In: Ehlers, W., Bluhm, J. (Eds.), Porous Media: Theory,

Experiments and Numerical Applications. Springer-Verlag, Berlin, pp. 3–86.

Ehlers, W., Volk, W., 1998. On theoretical and numerical methods in the theory of porous media based on polar and non-polar elasto-

plastic solid materials. International Journal of Solids and Structures 35, 4597–4617.

Ehlers, W., Diebels, S., Michelitsch, T., 2001a. Microscopic modelling of granular materials taking into account particle rotations. In:

Vermeer, P.A., Diebels, S., Ehlers, W., Herrmann, H.J., Ramm, E. (Eds.), Continuous and Discontinuous Modelling of Cohesive-

Frictional Materials. Springer-Verlag, Berlin, pp. 259–274.

Ehlers, W., Ellsiepen, P., Ammann, M., 2001b. Time- and space-adaptive methods applied to localization phenomena in empty and

saturated micropolar and standard porous materials. International Journal for Numerical Methods in Engineering 52, 503–526.

Hashin, Z., 1983. Analysis of composite materials––a survey. ASME Journal of Applied Mechanics 50, 481–505.

Hill, R., 1963. Elastic properties of reinforced solids: some theoretical principles. Journal of the Mechanics and Physics of Solids 11,

357–372.

Huet, C., 1997. An integrated micromechanics and statistical continuum thermodynamics approach for studying the fracture

behaviour of microcracked heterogeneous materials with delayed response. Engineering Fracture Mechanics 58, 459–556.

Kruyt, N.P., Rothenburg, L., 1998. Statistical theories for the elastic moduli of two-dimensional assemblies of granular materials.

International Journal of Engineering Science 36, 1127–1142.

Kun, F., Herrmann, H.J., 1996. A study of fragmentation processes using a discrete element method. Computer Methods in Applied

Mechanics and Engineering 138, 3–18.

M€uuhlhaus, H.-B., Vardoulakis, I., 1987. The thickness of shear bands in granular materials. G�eeotechnique 37, 271–283.

Nemat-Nasser, S., Hori, M., 1999. Micromechanics: Overall Properties of Heterogeneous Materials. Elsevier Science Publisher,

Amsterdam.

Tillemans, H.-J., Herrmann, H.J., 1995. Simulating deformations of granular solids under shear. Physica A 217, 261–288.

Vardoulakis, I., Sulem, J., 1995. Bifurcation Analysis in Geomaterials. Blackie Academic and Professionals, London.

Viggiani, G., K€uuntz, M., Desrues, J., 2001. An experimental investigation of the relationships between grain size distribution and shear

banding in sand. In: Vermeer, P.A., Diebels, S., Ehlers, W., Herrmann, H.J., Ramm, E. (Eds.), Continuous and Discontinuous

Modelling of Cohesive-Frictional Materials. Springer-Verlag, Berlin, pp. 111–127.


	From particle ensembles to Cosserat continua: homogenization of contact forces towards stresses and couple stresses
	Introduction
	Momentum and angular momentum of single particles
	Balance equations for embedded particles
	Embedded ensembles of particles
	Homogenization strategy
	Numerical example and validation
	Discrete element model
	The biaxial problem
	Numerical results

	Conclusions
	Acknowledgements
	References


