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Abstract

In the present contribution, a transition from the dynamics of single particles to a Cosserat continuum is discussed.
Based on the definition of volume averages, expressions for the macroscopic stress tensors and for the couple stress
tensors are derived. It is found that an ensemble of particles allows for a non-symmetric macroscopic stress tensor and,
thus, for the existence of couple stresses, even if the single particles are considered as standard continua. Discrete ele-
ment method simulations of a biaxial box are used for the validation of the proposed homogenization technique.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The theoretical description of granular media is a challenging task and is required in several branches of
engineering such as geotechnics and soil mechanics but also in various technological applications such as
powder technologies or sintering processes. Basically, granular media can be treated by two different ap-
proaches proceeding either from microscopic or from macroscopic considerations. While the microscopic
approach is based on the description of the single grain behaviour of the granular medium by use of rigid
body dynamics, the macroscopic approach depends on continuum mechanical methods. The advantage
of the microscopic approach lies, on the one hand, in the simplicity of formulating constitutive equations
for the particle contacts and, on the other hand, in the detection of any kind of oncoming localization
during the deformation process. However, treating realistic boundary-value problems stemming from
engineering requirements implies the necessity of solving a huge amount of coupled equations, where the
motion of billions of particles has to be described, e.g., on the basis of the discrete element method (DEM),
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cf., e.g., the work by Cundall and Strack (1979). If one proceeds from continuum mechanics, where the
granular medium can be described as a porous solid material rather than an ensemble of particles, the
number of equations that has to be solved is generally much smaller. As a consequence, one obtains a more
convenient solution procedure for the treatment of realistic boundary-value problems, e.g., on the basis of
the finite element method (FEM), cf., e.g., the work by Ehlers and Volk (1998), Ehlers et al. (2001b) and
Ehlers (2002). On the other hand, the macroscopic constitutive description of granular materials is highly
complex combining elastic, plastic and viscous material properties. Furthermore, it is well known that, if
localization phenomena occur, the mathematical problem becomes ill-posed and has to be regularized.
Following this, the continuum mechanical solution of boundary-value problems, where localization phe-
nomena are expected, has to include a regularization mechanism, which, in the frame of granular media, is
naturally given by taking into account a micropolar or a Cosserat continuum (Ehlers and Volk, 1998),
respectively. Note in passing that a link between the Cosserat continuum and localization phenomena
has firstly been made by Miihlhaus and Vardoulakis (1987). Concerning a general view on a contin-
uum bifurcation analysis of geomaterials, the reader is referred to the work by Brinkgreve (1994) or by
Vardoulakis and Sulem (1995).

Apart from considering either the microscopic or the macroscopic approach to granular media, there is a
convenient possibility to combine the advantages of both strategies. In particular, this method is given by
a continuum mechanical treatment of granular materials on the macroscale, where the constitutive
description, e.g., the relation between stresses and strains, is substituted by the solution of a microscopic
problem based on particle mechanics. The result obtained by solving the underlying problem on the
microscale can then be homogenized by volume averages, thus relating, e.g., particle contact forces to
macroscopic stresses. Following this, it is one of the key points of the present contribution to deliver a
homogenization strategy, where macroscopic quantities are obtained as volume averages taken over the
microstructure. In contrast to the standard literature, where the homogenized stresses are usually assumed
to be symmetric, cf., e.g., the work by Drescher and de Josselin de Jong (1972) and follow-up papers, the
present findings also reveal stress asymmetries accompanied by couple stresses. These findings are due to
the fact that three different scales are considered, namely, the microscale on the grain level, the mesoscale
understood as the scale of the representative elementary volume (REV) and the macroscale of the total
granular ensemble under study. It is furthermore considered that the systems to be investigated on the
different scales are of completely different size, thus allowing for the application of Hashin’s MMM
principle of scale separation (Hashin, 1983). However, the question of how large the REVs under con-
sideration must be has been extensively discussed in the literature, cf., e.g., the work by Bear and Bachmat
(1991) or by Nemat-Nasser and Hori (1999). This question is of considerable importance, since a homo-
genization procedure always filters the information obtained on the underlying scale. Thus, the size of the
REVs must be chosen in such a way that, on the one hand, the homogenized quantities represent conve-
nient substitutes of their counterparts on the microscale and that, on the other hand, the homogenization
process does not smear out local effects like stress and strain localizations within shear bands.

Following the above remarks, it is the goal of the present contribution to answer the question of how
large must a typical REV be chosen to meet the above requirements. This question will be treated on the
basis of the DEM in combination with homogenization strategies, where the forces of the particle network
are related to macroscopic stresses and couple stresses. In particular, the paper starts with a brief recon-
sideration of the basic axioms of rigid body dynamics and of continuum mechanics, where both non-polar
and micropolar media are taken into account. In a second step, single particles are considered which are
embedded in the granular medium. In full agreement with the literature (Drescher and de Josselin de Jong,
1972; Cundall et al., 1982), the particle stresses computed from contact forces are found symmetric.
However, taking into account an ensemble of particles considered as the REV and embedded in a granular
medium reveals that the ensemble is governed by non-symmetric stresses in addition to couple stresses.
These findings are due to the fact that the particle contact forces are reduced to the particle mass centers,
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thus yielding both a particle force resultant and a particle moment resultant, where the latter turns out to
govern the existence of couple stresses. The following homogenization procedure relates the force and
moment resultants of the particles included in the REV to average stresses and couple stresses representing
the macroscopic counterparts of the local REV behaviour, cf. Diebels and Ehlers (2001), Diebels et al.
(2001) and Ehlers et al. (2001a).

In order to verify the proposed averaging strategy, a DEM simulation (Tillemans and Herrmann, 1995;
Kun and Herrmann, 1996; D’Addetta et al., 2002) of the well-known biaxial test is carried out, where the
homogenization procedure is numerically applied to the contact force network. As is well-known from both
experiments (Viggiani et al., 2001) and FEM computations of the biaxial test based on continuum me-
chanical considerations in the frame of granular media (Ehlers and Volk, 1998), it is expected that, at the
beginning of the deformation process, a fully homogeneous situation occurs which is followed by a strain
localization procedure, where narrow shear bands can be found. Furthermore, the numerical computations
by Ehlers and Volk (1998) revealed that the evolving shear bands are strongly affected by micropolar grain
rotations and couple stresses. In the present contribution, it is shown by use of different REV sizes that
sufficiently small REVs can resolve the oncoming localizations by representing the couple stresses and stress
asymmetries, whereas increasing the size of the REVs or increasing the ratio between the REV volumes and
the REV surfaces, respectively, eliminates these effects. This result is not surprising, since it is known from
experiments that the shear band width covers only a very few grain diameters (Viggiani et al., 2001).
Consequently, if the REV is large compared to the shear band thickness, the local inhomogeneities are
fully smeared out. Similar results have recently been found by Bardet and Vardoulakis (2001), where it
has been shown on the basis of a homogenization strategy proceeding from the virtual work principle that
stress asymmetries and couple stresses can basically arise. It has furthermore been shown that these
asymmetries decrease with an increasing ratio between the volume and the surface of the particle ensemble
under study.

2. Momentum and angular momentum of single particles

This section briefly recalls the basic results of rigid body dynamics as well as of mechanics of deformable
continua. These results are the onset of the homogenization process applied to single particles and to
ensembles of particles in order to compute macroscopic stresses and couple stresses from a given distri-
bution of contact forces.

The mass of a single particle 2, rigid or deformable, is given by

m:/dm:/pdv, (1)
7 7

where dm is the mass element, p the mass density and dv the volume element of 2.

If 2 is considered as a rigid particle of arbitrary shape, the motion of 2 is described by the translation of
its center of mass and by the rotation around it. The position x,, of the center of mass M of the particle is
defined by

1
XM:—/de, (2)
m Jop

cf. Fig. 1, where x,, is equivalent to the volume center x, of 2 in case of homogeneous density distribu-
tions. Furthermore, the introduction of a local position vector

X=X —Xy (3)
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Fig. 1. Forces acting on a single particle 2 with boundary 02.

relative to M includes the identity

Lidm =0. (4)

Applying the axioms of mechanics to an arbitrary particle 2, rigid or deformable, the balance of mo-
mentum (linear momentum) yields

. d
p=gP=k (5)

where the momentum p and the external forces k are given by

p:/de, k:/ tda+/bdm. (6)
? o» »

Therein, t represents the external stress vector (contact forces per surface element da), whereas b indicates
the body forces (gravitation) per mass element dm. In case of particle mechanics, where Z is assumed to be
a rigid body rather than a deformable continuum, one is generally not interested in a local but only in a
global statement. Following this, one obtains the global momentum balance with respect to M with the aid
of (3), (5) and (6) via

In continuum mechanics, where 2 is usually assumed to be a deformable body, the combination of (5) and
(6) yields

/ pxdv = /(diVT + pb)do, (8)
» »

where T is the Cauchy stress tensor related to the surface tractions by t = Tn (n is the outward oriented unit
surface normal), and div(-) is the divergence operator corresponding to the gradient operator grad(-) taken
with respect to the spatial position x. Furthermore, if the fields incorporated in (8) are steady and suffi-
ciently often steadily differentiable, the local form of the momentum balance reads

px =divT + pb. 9)

No matter if 2 is rigid or deformable, the balance of angular momentum (moment of momentum) is
defined with respect to an arbitrary but fixed point in space which, in the present study, is chosen without
loss of generality as the spatial origin ¢. Thus,

h, := ih:mo, (10)
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where the angular momentum vector hy and the moments m, of the external forces are given by

hoz/xxi(dm, moz/xxtda—i—/xxbdm. (11)
P 0P 2

In case of rigid body dynamics, a substitution of x by x,, + X yields the angular momentum and the
moment of the external forces via

h() = Xy ><ﬂ/[)'(‘/[/1‘|'hM7 my = Xy, Xk—‘y—nlM7 (12)
where
hM:/)_(X);(dm, mM:/ixtdaJr/)_(xbdm (13)
P o7 2

define the angular momentum and the moments of £ with respect to M. Note in passing that the second
term of (13), generally vanishes, since the center of gravitation and the center of mass coincide, if b is
constant and is, thus, independent of x. Taking into account that # is assumed as a rigid body, where the
norm |x| of the position vectors X relative to M is constant, the corresponding velocities X are obtained via

X=0mxX= Q% (14)
Therein, @ is the angular velocity of the rigid body motion and Q the corresponding skew-symmetric
gyration tensor:

3 13 13
Q:—EwHw:—EEQ:EEQT. (15)

3
Note in passing that E defines the fundamental tensor of third order (Ricci permutation tensor) and that @
is the axial vector of Q. By combination of (13); and (14), hy, is obtained as

hM = (‘)M(l)7 (16)
where
O, = /y[()‘(-i)l— (X ®x)]dm (17)

defines the positive definite, symmetric mass tensor of inertia, where I is the fundamental tensor of second
order (identity tensor). Consideration of (7) and (13) together with the above results yields the angular
momentum balance with respect to M via

hy =my or (Oy0) =my, (18)
respectively, where

(O)0) = Opo + Oyo. (19)
Therein, the time derivative of ®;, can be given by

. %
0, =0, +Q0, + 0,0 (20)

%
where @), is the Green—Naghdi rate of ®,, taken with respect to a co-rotational frame fixed to the mass
center M of 2. Since 2 was assumed as a rigid body with constant values of |X|, the Green—Naghdi rate
vanishes and (20) reduces to

0, = 2sym(QO,). (21)

Given the above results together with (7)—(13), the angular momentum balance of a rigid particle 2 can be
split into the terms:
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X}M><7’}’lji]l/[:X]l/[><k7

. (22)
Oy + 2sym(QO, o = my,.

From the above set of equations, it is seen that only the second relation, which is generally known as Euler’s
gyration equation, has the property of an axiom, while the first one is a result of the momentum balance. It
is furthermore concluded that, in the limit of a particle £ reducing to a material point with vanishing values
of |X|, both m,, and the tensor of inertia ®;, vanish and only (22); remains as an identity.

If the particle 2 has to be considered as a deformable rather than a rigid body, the result (22) has to be
replaced by a more general approach. Given the axiomatic angular momentum balance (10) together with
the information included in (11), the balance equation reads

/xxidm:/xxtda+/x><bdm. (23)

Application of Cauchy’s theorem together with the Gaussian integral theorem to the first term of the right
hand side of (23) yields

/ X X tda = / (x x T)nda = / divMdu, (24)
[ [ 2
where
3
M:=xxT=[E(xaT)} (25)

is defined as the stress moment corresponding to the Cauchy stress T. Note in passing that []g defines a
contraction of the arguments in brackets toward a tensor of second order. Insertion of (24) in (23) yields

/ X X pxdv = /(divMer x pb)do. (26)
2 Z

2
From (26), the local angular momentum statement reads

X X pX =divM + x X pb, (27)
where divM can be split into

divM=IxT+x xdivT. (28)

Following this and considering the local momentum balance (9) again leads to two different statements of
the local form of the balance of angular momentum, namely

X X pX =x x (divT + pb),

29
IxT=0, (29)

where only the second relation includes the axiom of the angular momentum balance, while the first one is
an identity resulting from the momentum balance. Finally, it is well known that (29), yields

3 A
0=IXxT=ET" =2t = T=T", (30)

where ? is the axial vector associated with the skew-symmetric part of T. Obviously, the Cauchy stress is
symmetric.

However, if a continuous body is considered, by definition, as a Cosserat continuum, the angular
momentum hy and the external moment m, of (11) have to be extended by
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hOZ/(XXX+@a))dm,
g (31)

mO:/ (x><t+ﬁ1)da+/(x><b+c)dm.
0P P

Therein, ©® is defined as the symmetric tensor of microinertia and @ is understood as the total local
rotational velocity given as the result of both the continuum rotation and the independent Cosserat ro-
tation (Ehlers and Volk, 1998). Furthermore, m is the contact moment acting on the boundary of the
body under consideration, whereas ¢ is known as the body couple. Concerning further details on the
discussion of Cosserat continua and the application of micropolar media to a variety of boundary-value
problems, the interested reader is referred to Ehlers (2002) and Ehlers and Volk (1998) and the quotations
therein. Substituting (11) by (31), a combination of (10) and (31) yields the axiom of angular momentum to
read

/ Ix x pk + p(@a)]dv — / (div(M + M) + x x pb + pc]dv, (32)
» »
thus substituting (26). Note in passing that the couple stress tensor M is related to the contact moments m
through the Cauchy theorem via

m = Mn. (33)
Given (32), the corresponding local statement reads
X X pX + p(@®)" = div(M 4+ M) + x x pb + pec. (34)

Proceeding from (28) together with the local momentum balance (9) again yields two different statements,
namely

X X pX =x x (divT + pb),

— — 35
p(O@) =1x T+ divM + pe, (35)

where the second relation includes the axiom of the angular momentum balance in the frame of micropolar
continua, thus substituting (29),. In contrast to (29), leading to a symmetric stress T, it is seen from (35),
that T is non-symmetric, whenever the continuum is micropolar. It is furthermore concluded that (35),
compares to (22),, if the right-hand side of (35), is identified with the total local moment by contact and
volume terms.

Having recalled these well-known results of rigid body dynamics and mechanics of deformable continua,
the same procedure can be applied to particles and ensembles of particles embedded in a surrounding
continuum.

3. Balance equations for embedded particles

The results derived above have been given for both rigid and deformable single particles independent of
their shape and size. However, in several engineering applications, large ensembles of particles have to be
considered, cf. Fig. 2. For example, if a sand heap consisting of millions of sand grains is taken into account
in the frame of soil mechanics, one is generally interested in the description of the macroscopic behaviour of
the body 4 (the granular medium) rather than in the behaviour of the individual grains 2. Obviously, the
macroscopic scale D of 2 is much larger than the characteristic dimension & of the particles 2. Fur-
thermore, since the motion of the particles takes place on a scale ¢ = /D < 1, the balance equations of
momentum and of angular momentum of the single particles can be simplified by use of the arguments of



6688 W. Ehlers et al. | International Journal of Solids and Structures 40 (2003 ) 6681-6702

'
'
'
'
'
'
'
'
"
"
"
"

D e -— ] ———
macroscale microscale

Fig. 2. Continuous body % consisting of a manifold of individual particles 2.

scale separation. Taking into account that the volume of the particles decreases with order O(¢*), while
their surfaces only decrease with order O(¢?), it is easily concluded that, in the limiting case of small
particles embedded in a large ensemble %, where the scale ¢ tends to zero (¢ — 0), the volume terms in the
momentum balance (8) or in the angular momentum balance (26) vanish and the general balance relations
of the individual particles reduce to the equilibrium conditions of forces

0:k:/ tda:/ divTdo (36)
oz 20)

and of moments
0=m; = / X X tda = divMduv. (37)
oz 20

Following the arguments given in (27)—(30) again yields a symmetric stress
T=T" (38)

on the particle level J.

If the discussion concerns rigid particles, where the contact zones between the individual grains 2 are
small in comparison to the whole particle surfaces 02", one is allowed to assume point contacts rather than
area contacts. Thus, the contact forces can be given as single forces f¥° acting at the contact points ¢, cf.
Fig. 3, which are connected with the mass centers .#” of 2 by the branch vectors 19¢,

Following this, the equilibrium conditions (36) and (37) can be given both in their continuous and in
their discrete forms via

N
0= / tda = £l 39
" ; (39)

and
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t=Tn

P P

Fig. 3. Idealization of contact stresses to single contact forces.

where, to obtain (40) from (37), x = x)s + X together with (39) has been used. Furthermore, it has been
assumed that 21 is affected by N discrete contacts.

4. Embedded ensembles of particles

If the scale difference between the grains (microscale) on the one hand and the whole body (macroscale)
on the other hand is sufficiently large, a mesoscale consisting of an ensemble of particles can be introduced
in the sense of a REV. Following this, a standard continuum, which is generally understood to consist of a
manifold of abstract material points, is now understood to consist of a manifold of REVs. Thus, the ar-
guments of scale separation can be twicely applied, namely, when the REV is constructed as a manifold of
grains by linking the micro- to the mesoscale and, furthermore, when the body is constructed as a manifold
of REVs, i.e., when the mesoscale is linked to the macroscale, cf. Fig. 4. This situation, where three scales
are touched, is well known as Hashin’s MMM (micro—meso—macro) principle of homogenization (Hashin,
1983), which is intensively discussed with respect to the definition of the REV, e.g., by Bear and Bachmat
(1991) or by Nemat-Nasser and Hori (1999). In particular, while the macroscopic scale is still of order O(D)
and the microscopic scale is still of order O(J), the intermediate mesoscale of the REV is of order O(d).

REV with boundary R

f(i)c

. €]

d — . J
macroscale mesoscale microscale

Fig. 4. Continuous body % consisting of particle ensembles (REVs).
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Fig. 5. Boundary of the REV, boundary particles with contact forces, force resultants and moment resultants.

Following the scale separation arguments, it is one of the key points of this article to assume that the
position vectors x,(,f,) of the mass centers M) of the individual particles 2 with boundary 02 can be
understood as field quantities x;, in the REV with boundary 0. Thus, the boundary of the REV is rep-
resented by the mass centers of the bounding particles, cf. Figs. 4 and 5. Furthermore, the scale separation
arguments imply that the motion of the particles in the REV takes place on the scale ¢; = d/d, while the
REV deforms in % on the scale ¢; = d/D. Assuming &; and ¢; to be sufficiently small, i.e., & < 1 and
&4 < 1, the simplified balance equations (36) and (37) of the grains hold in the REV and, furthermore,
equivalent relations of the REV hold in 4. Thus, on the grain level, one has

/ tda =0 and xMx/ tda+/ X x tda =0, (41)
a\0) o) o2l
while, on the REV level, it follows that
/ tda =0 and / (xyy xt+Xx xt)da =0. (42)
R o

Given (42), it is evident from the character of the REV that the magnitude of the norms of x,, and of x are
of different size. Following this basically interprets X x t as the fluctuations of x,, x t, comparable to the
turbulence contributions to the fluid stresses. Furthermore, note in passing that, in addition to Hashin’s
MMM principle, where D > d > § leads to e < 1, ¢4 < 1 and & < 1, the existence of non-vanishing
fluctuations also implies that ¢; < &5.

Furthermore, substituting the moment X x t by the notion m and following the arguments of (24)—(26) or
of (31)—(33), respectively, the REV balance relations (42) yield

/ tda = / divy, Tdv =0,
on »

(43)
/ (xy x t+m)da = / divyy (M + M) dv = 0,
o »

where divy,(-) is the divergence operator with respect to the field x,, and, in extension of (33), m is related to
the couple stress M using Cauchy’s theorem via

M=xxT—m=Mn=XxT)n=xxt. (44)
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Given (43), the corresponding local statements read

divy T=0, divyy(M+M) =0. (45)
If one furthermore splits the divergence of the stress moment M via (28) into

divyyM =1 x T + xj; x divy,/ T, (46)
(45) and (46) combine to

I x T+ divy,M = 0. (47)

In contrast to (38) implying symmetric Cauchy stresses T on the particle level, it is found that T is non-
symmetric on the level of the REV, whenever couple stresses M occur. Furthermore, it is easily concluded
from the definition of M given by (44) that M vanishes with vanishing fluctuations X x t, i.e., in the limit of
vanishing X with |X| — 0. These arguments clearly show that the REV represents a micropolar Cosserat
continuum, whenever M exists, and that it has the character of a standard non-polar continuum in the limit
of vanishing x. Furthermore, if the REV is considered as a continuum in the sense that it consists, theo-
retically, of a manifold of material points or particles, respectively, no matter whether or not |X| tends to
zero, the number of boundary particles is independent of the size of |X| and the continuum can be con-
sidered, depending on the necessities of the model under consideration, either as a micropolar material or as
a non-polar one.

On the other hand, realistic REVs consist of a certain number of grains instead of a theoretical manifold
of material points. Thus, considering constant values of |X|, a transition from a Cosserat to a standard
continuum can also be guaranteed. In this case, the REV volume has to be increased such that the ratio
between the REV radius and the particle radius increases with an increasing ratio between the REV volume
and the REV surface. Otherwise, the character of a Cosserat continuum is maintained.

If one is interested in the description of rigid particles embedded in the REV, the continuous formulation
of the statements given above can be substituted by discrete statements, cf. (39) and (40). In this case, where
the boundary of the REV is assumed to consist of B rigid particles 2, where each 2" has N° outward
oriented discrete contacts, cf. Fig. 5, the force equilibrium statement (43); on the REV level reads

B N° B
./ umzi/deTmn:E:}:ﬂW::EZﬁﬂzo, (48)
oR R i=1 c=1 i=1

where the force resultants of the outward oriented contact forces acting on the boundary of the bounding
particles 2" are given by

v
£ = 70, (49)
c=1

Note in passing that the force resultants f represent the contact forces acting on the boundary 82 of the
REV. In addition to the force equilibrium statement, the equilibrium equation of moments on the REV
level represented by (43), turns out to yield

B N°
Xy X t+m)da = / divyy( M +M)dv = x\ s £ 1 N T e o flide
[ vt myda = [ dive(+3) Z( LD

i=1
B .
ijfo +m?) =0, (50)
i=1

where the resultants m") of the moments of the outward orlented contact forces acting on the bounding
particles 2 and taken with respect to particle centers M) are given by
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Ne°

e (s1)

c=1

il

Again, note in passing that the resulting moments m) represent the contact (Cosserat) moments acting on
the boundary 0% of the REV. Furthermore, it should be noticed that these moments are independent of the
resulting forces f”). In contrast to the image of a continuous body, where the abstract assumption x| — 0
led from a micropolar to a non-polar continuum, a limit analysis in the frame of particle ensembles con-
stituting the REVs generally exhibits non-vanishing moments m®”. Given realistic REVs with constant
reference volume, this result is due to the fact that, even if the particle size [1°| on the microscale with order
d is extremely small such that |1°|/d — 0 on the mesoscale of the REV with order d, the number B of the
particles bounding the REV tends to infinity, whenever the REV size does not shrink with the particle size.
Thus, one generally obtains

B N°

lim )Y 199 £ £ 0. (52)
B—oo = o=
[10¢]/d—0 ! !

As a consequence, the information of the discrete microstructure of the REV is embedded into a resulting
continuum theory, where the material points are identified with the REVs. This continuum obviously turns
out to be a micropolar Cosserat continuum (Diebels and Ehlers, 2001; Diebels et al., 2001; Ehlers et al.,
2001a,b).

5. Homogenization strategy

Proceeding from the scale separation arguments by use of the MMM principle given in the previous
section, the distribution of contact forces on the particle level can be replaced by stresses and couple stresses
on the mesoscale of the REV. Similar arguments can be found in the literature, when the particle scale is
related to the macroscale by homogenization, cf., e.g., the work by Drescher and de Josselin de Jong (1972),
Cundall et al. (1982), Chang and Liao (1990), Bagi (1996) and Kruyt and Rothenburg (1998). Furthermore,
embedding the REV in a body % yields the macroscopic stress and couple stress quantities at a material
point of # as the homogenized counterparts of the REV stresses and couple stresses obtained by volume
averaging procedures. Since the REVs are embedded in 4, the scale separation argument led to the local
equilibrium conditions (45) on the REV level, where the stresses T and the stress moments M + M can both
be replaced by an abstract substitute A. Thus,

divyA = 0. (53)

Defining the macroscopic stress and couple stress tensors as volume averages (A) taken over the REV yields
(Hill, 1963)

(A) ::%/%Adv, (54)

where 7% is the volume of the REV under consideration. In order to relate the average (A) to the resultant
forces and moments acting on the boundary of the REV, the following identities are needed:

AT =TA" = (grad,,;x,)A", (55)
diVM(XM X A) = (gradMXM)AT + Xy ® leMA
Combination of the above identities yields

AT = divy (xy @ A) — x)y @ divyA. (56)
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Following this, the volume average (A7) = (A)" reads
1 1
(A" =— / divy(xpy ® A)do — — / X ® divy/Ado. (57)
Ve Ja Ve Ja

By consideration of the generalized equilibrium condition (53), the second term of (57) vanishes, and one
finally obtains the relation

(A)T = %R /M(XM ® A)nda, (58)

where the volume integral has been substituted by a surface integral using an extended Gaussian theorem.
Substituting the abstract equilibrium quantity A by the stress T yields

1 1
(m'=— / (xyy @ T)nda = — / Xy ® tda, (59)
Ve Joa Ve Joa
where Cauchy’s theorem has been used. Following this, one finally obtains the average stress as
1
(T) =— / t ® Xy da. (60)
VR oR

Furthermore, by substituting the local stresses by the particle stress resultants of the outward oriented
contact forces given by (49) and by replacing the field quantities x,, by the position vectors x;’} of the
particle centers, one obtains the discrete relation

_ if ®x. (61)

i=1

The above equation represents the well-known result that the average REV stress is given by the product of
the contact forces (represented by the external force resultants acting on the boundary particles) and the
branch vectors (related to the position vectors xM of the mass centers of the boundary particles). However,
note in passing that (T) is generally non-symmetric with respect to the existence of couple stresses.

Substituting the abstract equilibrium quantity A by the stress moments M and the couple stresses M
yields in analogy to (59)

M+M)'" = 1 / Xy ® (M + M)|nda = 1 / Xy ® (Xp X t)da+i / Xy ® mda, (62)
V}q R R V}? or

where, (44), together with

Mn = (xyy x T)n =x, x t (63)
has been used. Separating (62) by reasons yields

1
(M) ——/ (X X t) ® xprda,
(64)

/ m ® x,,da.

Furthermore, by substituting the local stress and couple stress moments in analogy to (50) by the outward
oriented contact forces acting on the boundary particles and substituting x,, by xM and m by the particle
couples m?¥), one obtains
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L& 0 iy oo
M) =2 S (xd) < 1) @ x),

VR i=1
NI — (i) (1)
M) = 7 ;m ® X -
Finally, the identity
(axb)@ec=ax (bxc) (66)

of tensor calculus, valid for arbitrary vectors a, b, ¢, together with the definition of the particle couples m")
from (51) yields

1< i i i
) =5 > (1 0 xi)),

— 1 & (&, . ;
M) =53 (Z“’” . f“”) ® Xy
c=1

(67)

i=1

From the above results, it is seen that the stress moment (M) is given as the sum of the moments of the
stress contributions included in (T) from (61), while the couple stress (M) is obtained similar to (61), when
the stress contributions f” of the bounding particles included in (61) are substituted by the sum of the
particle contact moments included in m® from (51). Furthermore, it is concluded that a couple stress exists,
whenever the MMM principle is applied to particle ensembles embedded in a continuous medium. The
couple stress results from the fact that a mesoscopic REV consisting of an ensemble of microscopic particles
has been embedded in a macroscopic body, which is clearly obtained as a micropolar Cosserat continuum
with considerable values of M, if ¢; < &5 holds in addition the MMM principle. It has furthermore been
shown, on the one hand, that the character of micropolarity is maintained even in case of decreasing
particle sizes as far as the REV size does not decrease in the same manner, cf. (52). On the other hand, it is
furthermore concluded that, if the REV decreases to the particle size, e.g., if the REV can be identified by a
single particle, the stress becomes symmetric, cf. (38), and the Cosserat continuum changes towards a
standard non-polar continuum.

Applying the above results to continuum mechanical problems implies that the stresses incorporated in
(9) as well as the stresses and the couple stresses incorporated in (35), can be replaced by the above averages
(T) and (M). Finally, if a standard continuum is concerned, e.g., in frame of the FEM, one has to solve
only the weak form of the momentum balance (9), while, if a micropolar continuum has to be considered,
one has to solve the weak form of (9) together with the weak form of the angular momentum balance (35),,
cf. Ehlers (2002). On the other hand, if one is interested to fully solve the problem on the particle level, e.g.,
by use of the DEM, one has to solve the Eulerian equations (7) and (22), for each particle taking into
account convenient contact conditions. Based on solutions of the discrete problem, arbitrary sizes of REVs
can be investigated in order to study the homogenization process yielding the local averages (T) and (M).

6. Numerical example and validation

In the present section, the homogenization procedure discussed above is applied to the boundary-value
problem of the biaxial test, cf. Fig. 6. In particular, a two-dimensional problem is taken into account, where
the biaxial box under consideration consists of a manifold of rigid grains. The computations are carried out
in the framework of the DEM, where the appearance of asymmetric stresses accompanied by couple
stresses is studied with respect to different REV sizes. Following this, the key focus concerns the question,
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Fig. 6. Biaxial setup and deformed state of the benchmark under study.

how large must the REV be in order to yield, on the one hand, local averages as convenient substitutes of
their microscopic counterparts and, on the other hand, a correct representation of the underlying micro-
structure. In particular, this question can be answered on the basis of how much particles have to be in-
cluded within the REV such that the a.m. requirements can be satisfied. By numerical simulations, an
“ideal” size of the REV on the mesoscale of order d can be discussed that guarantees a reliable quantitative
comparability with the macroscale of order D without loss of locality.

6.1. Discrete element model

The following computations are carried out on the basis of a two-dimensional discrete element simu-
lation (Cundall and Strack, 1979) with convex polygonal particles, cf. Tillemans and Herrmann (1995) and
Kun and Herrmann (1996), representing, e.g., a dry granular material like sand, where each particle center
is assigned three degrees of freedom, two translations and one rotation. Furthermore, the model is based on
a particle composite, where the polygonal mesh is determined by a Voronoi tessellation considering the
generated polygons as rigid grains. Following this, these grains are assumed to be neither breakable nor
deformable, but they may overlap when they are pressed against each other. In addition, the local defor-
mation behaviour caused by the overlaps can be approximated by elastic repulsive forces ¢ at each
contact point ¢ of a particle 2. In general, the repulsive forces can be related to the overlapping areas of
the particles in contact with respect to both normal and tangential stiffnesses (Tillemans and Herrmann,
1995), which can be related to each other, e.g., by Coulomb’s friction law. Furthermore, if more sophis-
ticated models are of interest, additional rotational stiffnesses can be taken into account. In the present
simulation, rotational stiffnesses as well as the tangential parts of the contact forces are neglected. However,
this has not only been done for simplicity, but also in order to show that, in the case of polygonal grains,
couple stresses simply arise from the eccentricities of the particle contacts with respect to the local mass
centers and have not to be introduced by a refined contact description, where the transfer of moments
additionally stems from tangential contact forces and rotational stiffnesses, cf., e.g. Chang and Liao (1990)
and Chang and Gao (1995). The force resultants f” and the moment resultants m, which are now only
due to the eccentricities of the normal forces of each 2, are inserted into the equations of motion, which
are numerically solved for each particle with the aid of the Gear—Predictor—Corrector time integration
scheme, thus yielding the new positions, velocities and accelerations of the particles. More information on
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the applied model as well as further descriptive simulation results can be found in D’Addetta et al. (2001,
2002).

6.2. The biaxial problem

In this article, the benchmark used for the validation of the above homogenization procedure is chosen
as a strain driven biaxial simulation, where the biaxial box with rigid side walls consists of approximately
2500 polygonal particles. Loading takes place by pressing together the top and bottom platens with a
constant velocity, while the side walls are assigned a constant pressure, cf. Fig. 6. While it is well known
from experiments on granular samples that a shear localization occurs at a certain amount of vertical
displacements (Viggiani et al., 2001), it has additionally been found by numerical simulations based on a
Cosserat continuum included in the FEM (Ehlers and Volk, 1998) that the localization zone is affected by
micropolar rotations and couple stresses, while, in the remainder of the biaxial domain, no Cosserat ro-
tations or couple stresses occur. Following this, it is easily concluded that the micropolar effects occurring
in the boundary-value problem under study are of boundary layer type. These results are not only expected
to be recovered by use of the DEM, but it is also expected that the homogenization process detects the
macroscopic couple stresses M in the shear band zones by taking suitable volume averages over REVs in
the localizing domains. Finally, it should be mentioned that the following study, although it is understood
as an adequate benchmark for the validation of the proposed homogenization technique, does not allow for
a quantitative comparison with a real granular structure, since the parameters and contact laws, which are
used here, are chosen arbitrarily.

In Fig. 6(a), the initial particle structure of the biaxial problem is presented. The particles on the vertical
middle line of the sample are darkened in order to simplify a comparison with the deformed state given in
Fig. 6(b). Furthermore, two center particles, each belonging to two different REV sizes, are marked. These
REYVs, which are widely used in the following homogenization procedure, are compared to each other when
they are assumed to exhibit idealized diameter of either five particles (REV_5) or of 19 particles (REV_19).
The deformed sample, cf. Fig. 6(b), shows the formation of two parallel shear zones, where the upper one
(D) appeared firstly. Note in passing that the particles above the shear zone (1) and below the shear zone 2)
form wedges that undergo a rigid body translation without any visible internal deformation or rotation.
The region in between the shear zones behaves like a rectangular block sheared at the top and at the
bottom. Between the wedges and the middle block, regions of finite width with high shear rates charac-
terized by dilation and particle rotations represent the shear bands. As can be seen by a comparison of the
accentuated particles before and after the deformation of the specimen, the deformation of the sample is
highly localized in the shear band domains. The purely local deformation of the vertical line of the
darkened particles reveals a reorganization of the particle structure. In particular, this line remains vertical,
except of the “discontinuity’ in the region of the shear zones. Although a comparison with experimental
data is not the topic of the present contribution, it should be emphasized that the simulations given here are
in good qualitative agreement with both experimental and numerical results of dry granular materials like
sand etc., cf. the biaxial experiments on Hostun sand given by Viggiani et al. (2001) or the computations
described by Ehlers and Volk (1998).

6.3. Numerical results

At each time step of the biaxial simulation, the average stress and couple stress tensors according to (61)
and (67), have been evaluated for approximately 1500 REVs. These REVs have been created in the fol-
lowing way, cf. D’Addetta et al. (2003): After having drawn a circle around the center particle of the REV
under consideration, all particles inside the circle and those boundary particles with mass centers inside the
circle are assumed to belong to the REV. Following this, the polygonal line following the mass centers of
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Fig. 7. REV basis particles (a) and “macroscopic” stress—strain behaviour (b).

the bounding particles represents the boundary 0% of the REV with the volume 7%;. The composition of
each REV is fixed at the beginning of the simulation and is not changed in the course of it. One could think
of all particles within the REVs that they are surrounded by a flexible vessel allowing for internal defor-
mation as well as for an interchange of forces with the surrounding particles (Huet, 1997). Hence, the shape
of the REVs can only be coarsely approximated by a circle, cf. Fig. 6(a) for two arbitrarily chosen REV
positions. The basis particles (centers) of all controlled REVs are the lightened particles shown in Figs. 6
and 7(a), where, around each of those particles, a more or less circular influence region defines the REV.

Different REV sizes have been investigated in order to verify the proposed homogenization technique.
Throughout this section, the focus lies on the following two REV sizes:

e REV_5: On average, there is a REV diameter of five particles with approximately 20 particles inside the
REV,

e REV_19: On average, there is a REV diameter of 19 particles with approximately 280 particles inside the
REV.

In Fig. 7(b), the overall stress—strain response in terms of the vertical coefficient 75, of the stress tensor T
is plotted versus the strain coefficient &,. Therein, Ty, refers to the externally measurable stress answer of
the sample computed by the reaction forces at the bottom or the top loading platens divided by the sample
areas. Furthermore, &), is simply measured by the vertical displacement with respect to the specimen height.
The pointers (1) and (2) at the stress—strain curve denote the evolution of the shear bands emphasized in
Fig. 6(b). Due to the formation of the first shear band in the upper part of the sample, cf. (1), a sharp drop
by 25% of the stress is achieved. When the second shear band occurs at (2) a short time later, a further but
smaller drop of the stress is observed. Afterwards, the deformation of the sample continues without any
notable increase of stress. Note in passing that the consideration of polygonal particles instead of circular
ones prevents from the formation of rolling modes within the particle sample, typically seen in simulations
with circles, cf. Ehlers et al. (2001a,b). Furthermore, at pointer (1), the typical particle interlock for poly-
gonally shaped grains ends up in an abrupt failure, when suddenly a part of the stored energy is set free.

The goal of the further computations is to show that the application of the above homogenization
technique maintains inhomogeneous effects occurring on the microscale when the microstructure is
transferred towards the mesoscopic REV. However, this statement depends on the chosen REV size. To
illustrate this statement, two particular REV positions are used for the oncoming comparison. In the first
case, the corresponding REYV basis particle lies within the firstly evolving shear band, whereas, in the second



6698 W. Ehlers et al. | International Journal of Solids and Structures 40 (2003 ) 6681-6702

0.4 04

0.2] 0.21

[kNem/em?]
)| [kNem/em?)

(M)]
5

(M
8

— REV.5 — REV.5
--- REV_19 === REV 19
L L L 0.4 L L 1 n

R -2 -1 0 B .

2
(a) €22 [%A)] (b) 22 [%)]

-1 0

Fig. 8. Norm of the couple stress tensor (M) for different REVs inside (a) the shear band @ and outside (b) the evolving shear bands.

case, the basis particle is situated outside of the influence zone of both shear bands. Both basis particles are

identified with the centers of the circles marked in Fig. 6(a). In Fig. 8, the norm |(M)| = 1/ (M3)* + (M)’
of the couple stress tensor (M) corresponding to the REV sizes REV_5 and REV_19 at the two REV
positions is plotted versus the nominal vertical strain coefficient ¢,, defined above. Concerning Fig. 8, two
effects are visible: Firstly, as has been expected, couple stresses are only active in the shear band zone, cf.
Fig. 8(a), while outside the shear band no couple stresses occur, cf. Fig. 8(b). Secondly, the homogenized
couple stresses become only visible if the REV size is small enough such that microscopic effects are not
smeared out on the mesoscale, cf. the different results of REV_5 and REV_19 given in Fig. 8(a). Once
again, these observations are in good agreement with both numerical simulations carried out on the basis of
the FEM by use of a micropolar Cosserat continuum (Ehlers and Volk, 1998; Ehlers, 2002) as well as
experimental results on dry granular materials. Since the width of experimentally observable shear bands,
like in sand, consists of only a few grain diameters (Viggiani et al., 2001), a REV should not be chosen too
large in order to capture the influence of the microscopic inhomogeneities on the macroscale. In Figs. 8 and
9, the pointer (1) again indicates the onset of the first shear band.

Concerning the particle contact behaviour included in this study, recall that only normal stiffnesses have
been taken into account and that tangential forces as well as rotational stiffnesses have not been considered.
Thus, in contrast to articles, where rotational stiffnesses are used, cf., e.g., the work by Chang and Gao
(1995), the couple stresses naturally result from the eccentricities of the normal contact forces and are
neither due to tangential contact forces nor to an enhanced contact description through the introduction of
rotational stiffnesses.
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Fig. 9. Difference of shear stresses included in (T) for different REVs inside (a) and outside (b) the evolving shear band.



W. Ehlers et al. | International Journal of Solids and Structures 40 (2003 ) 6681-6702 6699

In addition to the couple stresses, a further indicator for the existence of localization zones is the ex-
istence of non-symmetric stress tensors, which, in the biaxial problem under study, are given by non-
vanishing differences between (7},) and (7»;). Recall that, if a couple stress exists, the stress tensor is not
symmetric and, hence, (7},) # (T5;) is expected to hold in the localization zone. In Fig. 9, the value
|{T12) — (T51)] of the difference between the shear stresses is plotted with respect to the size and the position
of the REVs. From this figure, it is clearly seen when (T) becomes unsymmetric. In analogy to the detection
of couple stresses, it is evident that stress asymmetries are only obtained in the case of a sufficiently small
REV lying within the localization region. Concerning the present example, there is only a clear difference
between (71,) and (T»;), cf. Fig. 9(a), for the REV with size REV_5 located inside the shear band. Fur-
thermore, it is seen that the REV with size REV_19 is unable to detect a shear zone by use of the proposed
homogenization technique. In addition, it is obvious that the REVs outside of the developing shear bands
exhibit symmetric stresses like they exhibit vanishing couple stresses, cf. Figs. 8(b) and 9(b).

Concerning the above results, it should be mentioned that a (7»,) versus &, diagram of the corre-
sponding REVs would principally follow the graph of the macroscopic stress—strain curve given in Fig.
7(b). Therein, the locality of the variables is included expressed by fluctuations in the (7») values with
respect to the position of the REVs. Furthermore, it is observed that the amplitude of stress asymmetries
decreases with increasing volumes of the REVs. These findings do not only correspond to the remarks given
above in Section 4, but they are also related to the observations made by Bardet and Vardoulakis (2001). In
addition to the findings by Bardet and Vardoulakis, the present article also provides a backbone for a
sound numerical treatment of the proposed homogenization process. It has furthermore been found that
the position as well as the size of the REVs play an important role, as stress asymmetries and, thus, couple
stresses are only active in the shear band zones. Following this, the result of an averaging procedure
strongly depends on the selection and on the geometry of the particular REV.

Finally, the temporal progress of the couple stresses as is shown in Figs. 10 and 11 gives additional
insight into the activation of couple stresses in shear zones. The norm of the couple stress tensor is plotted
for both REV sizes with respect to the time steps @), ®), ©) and @ indicated in Fig. 7(b). This sequence
covers the time interval between the development of the first shear band and the onset of the second one.
Note in passing that the deformation of the sample at time step @) has already been presented in Fig. 6(b).
Furthermore, the homogenized quantities computed for the particular REVs are projected onto the
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Fig. 10. Temporal progress of the norms of the couple stresses for REVs of size REV_S.
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Fig. 11. Temporal progress of the norms of the couple stresses for REVs of size REV_19.

corresponding basis particle in the deformed state, where the increasing darkness of each basis particle
represents the increasing average couple stress value in a circular neighbourhood of this particle. In ad-
dition, it should be mentioned that only those basis particles indicated by a light colour in Fig. 7(a) are used
for the graphical representation of Figs. 10 and 11. Hence, no REVs have been placed in the boundary
regions of the sample. A clear localization of the couple stresses becomes evident within the region of the
firstly evolving shear band for the REVs of size REV_5. Moreover, different points of activity within the
shear zone can be recognized during the course of the controlled time interval. This shows that the for-
mation of the localization zone is not as abrupt as one could think when the overall stress—strain response
in Fig. 7(b) is observed. In contrast, the temporal progress for REVs of size REV_19 does not reveal any
activity within the first shear zone. This fact would become even more evident, if the scale in Fig. 11 would
be adapted to the maximum values of REV_19. As a consequence of the relative large size of REV_19, the
norm of the couple stresses tends to zero and a smearing-out effect is obtained. Nevertheless, small local
fluctuations are still present, however, in a statistically distributed manner instead of a strict localization as
was found for the REVs of size REV_5. A more detailed analysis of the boundary-value problem under
study with emphasis on the numerical application of the presented homogenization strategy will be given in
a follow-up paper (D’Addetta et al., 2003).

However, there exists the following general dilemma: On the one hand, a discrete model has been applied
in contrast to a continuum model in order to precisely describe the locality of certain mechanical variables.
On the other hand, macroscopic stresses and couple stresses are required and should be obtained by
averaging or homogenization methods without yielding a loss of the detected locality. But, since each
homogenization technique based on averaging includes a filter with respect to the computation of the
relevant mechanical quantities, there is always the risk of losing the information to be investigated. Con-
cerning this remark, it has been found within the present study that an “ideal” REV size was obtained by
the size REV_5 containing around 20 particles. This REV, however far away from the theoretical re-
quirement of a manifold of particles, was found to be large enough to correctly represent averages relating
microscopic to macroscopic quantities and small enough to catch localization effects like couple stresses
and stress asymmetries. Further on, the REV_5 size guarantees values of the average stress (T) to be
comparable to the results of a fully macroscopic analysis in the framework of a continuum model. Of
course, considering the REV_5 size as “ideal” only holds for the problem under study, when the compu-
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tation of stresses and couple stresses is concerned. This statement has been checked by additional com-
putations, where the volume terms (body forces and accelerations) that are skipped by the homogenization
procedure are included in the computations leading to nearly the same numerical values for

|((M)| = \/ (M3)* 4+ (M) and for |(Ti,) — (T5;)|. An extension of the ideas presented in this study to ki-

nematic and energetic values, as well as the application to further boundary-value problems will show the
generality of the presented results (D’Addetta et al., 2003).

7. Conclusions

The present contribution recalls the basic axioms of rigid body dynamics and of continuum mechanics as
the basis for a homogenization procedure relating the contact forces between the grains of a particle en-
semble to macroscopic stresses and couple stresses. Following the arguments of scale separation, the be-
haviour of embedded particles is governed by equilibrium conditions which are expressed in terms of force
and moment resultants in the mass centers of the individual grains. Finally, volumetric averages yield
expressions for the stresses and for the couple stresses. While the stresses are related to the forces acting on
the particles, the couple stresses are related to the moments resulting from the reduction of the contact
forces towards the particle mass centers.

The proposed homogenization strategy has been applied to a biaxial test simulated by the DEM. It has
been found that the diameter of the REVs should be of the order of around 5 times the typical particle
diameter in order to reproduce the macroscopic stress response together with localization effects occurring
when strong inhomogeneities dominate the local behaviour. Increasing the diameter of the REVs leads to
smearing out the results in the sense that localizations become invisible. In particular, it was found that
micropolar effects occurring in the shear band zones are governed by the existence of couple stresses and
non-symmetric stress tensors. These effects are of boundary layer type and are, therefore, only detected by
sufficiently small REVs, while they are shrinking with increasing REV sizes. From the biaxial example
under study, the thickness of the shear band was found to be of the order of only several grain diameters,
thus limiting the REV size to about 5 particle diameters. Following this, the size of the REV is obviously
limited by the size of the effects to be described rather than by the theoretical requirement of containing a
“manifold” of particles. Finally, the presented results clearly show that a particle ensemble has the char-
acter of a micropolar Cosserat continuum rather than it represents a non-polar standard continuum.
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